• Title/Summary/Keyword: Self-tuning control

Search Result 336, Processing Time 0.027 seconds

Load Frequency Control of Power System using a Self-tuning Fuzzy PID Controller (자기조정 퍼지 PID제어기를 이용한 전력시스템의 부하주파수 제어)

  • 이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 1999
  • A self-tuning FPID(Fuzzy Proportional Intergral Derivative) controller fo load frequency control of 2-area power systemis proposed in this paper. The paramters of the proposed self-tuning FPID controller are self-tuned by the proposed fuzzy inference technique. Therefore in this paper the fuzzy inference technique of PID gains using PSGM(Product Sum Gravity Method) is presented and is applied to the load frequency control of 2-area power system. The computer simulation results show that the proposed controller give better more control characteristics than convention-al PID, FLC under load changes.

  • PDF

Implementation of a Pole-Placement Self-Tuning Adaptive Controller for SCARA Robot Using TMS320C5X Chip (TMS320C5X칩을 사용한 스카라 로봇의 극점 배치 자기동조 적응제어기의 실현)

  • 배길호;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.754-758
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS320C50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator, In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters we determined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

A Self-Tuning Fuzzy Controller for Torque and RPM Control of a Vehicle Engine

  • Seon, Kwon-Seok;Na, Seung-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.25-28
    • /
    • 1995
  • A Practical application of self-tuning fuzzy controller to a multi-input multi-output complex system of a vehicle engine is investigated. The ovjective is to design a controller to improve the transient performance in torque and RPM mode changes. For the performance improvement in the multivariable comples system, the self-tuning function of internal parameters is essential and practical. The measured output variables using different control schemes are compared the advanteges of the self-tuning fuzzy logic controller are better output performances and the effectiveness in the controller design using many parameters.

  • PDF

Generalized Minimum Variance Self-tuning Control of Offset Using Incremental Estimator (증분형 추정기를 사용한 오프세트의 일반화 최소분산형 자기동조제어)

  • 박정일;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.372-378
    • /
    • 1988
  • The elimination of offsets such as those induced by load disturbance is a principal requirement in the control of industrial processes. In this paper we propose a self-tuning minimum variance control in the two tuypes of k-incremental and integrating form. Since the objective of control design in this paper is a generalized minimum variance control, it can be applied to nonminimum phase system. And we compare the proposed algorithm wiht that of the positional self-tuning control and show that it can also be applied to nonminimum phase system by computer simulation.

  • PDF

Self tuning control with offset elimination for nonminimum phase system (비최소 위상 시스템에 대하여 오프셋(offset) 제거 기능을 가진 자기 동조 제어)

  • 나종래;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.78-82
    • /
    • 1986
  • In the process control applications of self tuning control, a major concern of the control problem is to handle an offset caused by load disturbances and random steps occuring at random instance of time. Conventionally an integrator is incorperated in the forward path of the controller to eliminate such an offset. But this approach causes a difficulty if the adaptive part of the resultant controller is to be evaluated. In this paper a method of analyzing the adaptive system and improving the offset effect is suggested for a class of referance model method in the self tuning adaptive control system.

  • PDF

Load Following Control of Pressurized Water Reactor (P.W.R. 원자로의 부하추종제어)

  • Lee, Buhm;Park, Young-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.221-225
    • /
    • 2008
  • This paper presents a self-tuning controller for pressurized water reactor (P.W.R.). This self-tuning controller includes two substantial steps, such as parameter identification and control-law building in each cycle. Extended least square algorithm is used for parameter identification, Kalman filter is used for state estimation, and discrete Riccati equation is used for optimal control. Effectiveness of this algorithm is shown through computer simulation and sensitivity analysis.

A Study on the Adaptive Active Noise Control Using the Self-tuning feedback controller (자기동조 피이드백 제어기를 이용한 적응 능동소음제어에 관한 연구)

  • Shin, Joon;Lee, Tae-Yeon;Kim, Heung-Seob;Jo, Seong-Oh;Bang, Seung-Hyun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.140-146
    • /
    • 1993
  • Active noise control uses the intentional superposition of acoustic waves to create a destructive interference pattern such that a reduction of the unwanted sound occurs. In active noise control system the choice of a control structure and design of the controller are the main issues of concern. In real acoustic fields there are a vast number of noise sources with time-varying nature and the characteristics of transducers and the geometric set-up of control system are subject to change. Accordingly the control system should be designed to adapt such circumstances so that required level of performance is maintained. In this paper, the adaptive control algorithm for self-tuning adaptive controller is presented for the application in active noise control system. Self-tuning is a direct integration of identification and controller design algorithm in such a manner that the two processes proceed sequentially. The least mean square algorithm was used for the identification schemes and adaptive weighted minimum variance control algorithm was applied for self-tuning controller. Computer simulation results for self-tuning feedback controller are presented. And simulation results was shown to be useful for the situation in which the periodic noise sources act on the acoustic field.

  • PDF

Maximum Torque Operation of SRM by using a Self-tuning Control Method (SRM의 최대 토크 운전을 위한 자기동조 제어)

  • 서종윤;김광헌;장도현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.240-245
    • /
    • 2004
  • This paper presents a Switched Reluctance Motor(SRM) drive using the self-tuning control method to achieve the maximum torque. SRM has the difficulty to research it by an analytic method and to control the speed End torque because of the high nonlinearity. So, in this paper, the self-tuning control method is applied to relevantly controlling turn-on/off angle to operate at the maximum torque. Also, the feedback signals to control the turn-on/off angle are the encoder pulse and the increment of phase current. At first, n adequate turn-off angle is searched by itself and then a turn-on angle is done. As the relationship between turn-on and him-off angle is mutual dependent, the turn-on/off angle is controlled by a real time self-tuning control method in order to maintain the maximum torque. The proposed self-tuning Algorithm is verified by experiments.

Self-Tuning Method for Fuzzy Controller (퍼지제어기의 자기동조 방법에 관한 연구)

  • Choi, Han-Soo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.218-220
    • /
    • 1993
  • This paper deals with a self-tuning fuzzy controller. The fuzzy controller is constructed with linguistic rules which consist of the fuzzy variables and fuzzy sets. Each of fuzzy sets is characterized by a membership function. The tuning fussy controller has paramemters to effect control output. In this paper we propose tuning method for the scaling factor. Computer simulations carried out on a second-order process will show how the present tuning approach improves the transient and steady-state characteristics of the overall system.

  • PDF

Design of Speed Controller of Rolling Mill DC Motor Drive System Using Self-Tuning Regulator (자기 동조 제어기를 이용한 압연용 직류 전동기 구동 시스템의 속도 제어기 설계)

  • Ji, Jun-Keun;Song, Seung-Ho;Sul, Seung-Ki;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1231-1234
    • /
    • 1992
  • In this paper a self-tuning control algorithm has been utilized to control speed of a rolling mill DC drive system. Inner current control loop is composed of predictive current controller and the outer speed control loop is composed of the self-tuning PI or IP controller. Computer simulation results reveal that the adaptive control algorithm using self-tuning control is capable of following the typical set point variations required for a rolling mill in conjunction with load torque variations on the shaft of the drive.

  • PDF