본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.
Recently, deep-learning based methods for low-light image enhancement accomplish great success through supervised learning. However, they still suffer from the lack of sufficient training data due to difficulty of obtaining a large amount of low-/normal-light image pairs in real environments. In this paper, we propose an unsupervised learning approach for single low-light image enhancement using the bright channel prior (BCP), which gives the constraint that the brightest pixel in a small patch is likely to be close to 1. With this prior, pseudo ground-truth is first generated to establish an unsupervised loss function. The proposed enhancement network is then trained using the proposed unsupervised loss function. To the best of our knowledge, this is the first attempt that performs a low-light image enhancement through unsupervised learning. In addition, we introduce a self-attention map for preserving image details and naturalness in the enhanced result. We validate the proposed method on various public datasets, demonstrating that our method achieves competitive performance over state-of-the-arts.
에너지 사용량의 증가와 친환경 정책으로 인해 건물 에너지를 효율적으로 소비할 필요가 있으며, 이를 위해 딥러닝 기반 이상 전력 탐지가 수행되고 있다. 수집이 어려운 이상치 데이터의 특징으로 인해 Recurrent Neural Network(RNN) 기반 오토인코더를 활용한 복원 에러 기반으로 이상 탐지가 수행되고 있으나, 시계열 특징을 온전히 학습하는데 시간이 오래 걸리고 학습 데이터의 노이즈에 민감하다는 단점이 있다. 본 논문에서는 이러한 한계를 극복하기 위해 Temporal Convolutional Network(TCN)과 UnSupervised Anomaly Detection for multivariate time series(USAD)를 결합한 TCN-USAD를 제안한다. 제안된 모델은 TCN 기반 오토인코더와 두 개의 디코더와 적대적 학습을 사용하는 USAD 구조를 활용하여 빠르게 시계열 특징을 온전히 학습할 수 있고 강건한 이상 탐지가 가능하다. TCN-USAD의 성능을 입증하기 위해 2개의 건물 전력 사용량 데이터 세트를 사용하여 비교 실험을 수행한 결과, TCN 기반 오토인코더는 RNN 기반 오토 인코더 대비 빠르고 복원 성능이 우수하였으며, 이를 활용한 TCN-USAD는 다른 이상 탐지 모델 대비 약 20% 개선된 F1-Score를 달성하여 뛰어난 이상 탐지 성능을 보였다.
항공산업의 경쟁이 치열해짐에 따라 효과적인 항공사 서비스 품질 측정은 주요 과제 중 하나가 되었다. 특히 빅데이터 어낼리틱스가 새로운 연구 패러다임으로 각광받게 됨에 따라 소비자가 직접 작성한 온라인 리뷰 분석을 통한 항공사 서비스 품질 측정 연구들이 새롭게 시도되고 있다. 그러나 이러한 연구들은 리뷰 제목을 분석에 활용하지 않았다는 점, 학습 데이터 셋 구축을 위한 레이블링(labeling)에 있어 사람의 개입이 많이 요구되는 지도 학습(supervised learning)에 의존한다는 점, 서비스 품질 차원 분류에 있어 항공사 특성을 고려하지 못한다는 점 등이 문제로 지적되고 있다. 기존 연구의 한계를 극복하기 위해 본 연구에서는 제목과 본문을 포함한 온라인 리뷰 전체를 자가학습(self-training)과 감성 분석을 활용해 AIRQUAL 서비스 품질 차원으로 분류함으로써 객관적이고 정교한 서비스 품질측정을 시도하였으며 이를 기반으로 서비스 품질 차원이 서비스 만족도에 미치는 영향을 파악하였다. 분석 결과 온라인 리뷰로부터 AIRQUAL의 다섯 가지 서비스 품질 차원을 효과적으로 추출할 수 있었으며 각 서비스 품질 차원은 모두 서비스 만족도에 유의한 영향을 미치는 것으로 나타났다. 나아가 리뷰 제목이 서비스 만족도에 미치는 영향 또한 유의한 것으로 파악되었다. 본 연구는 항공산업의 특성을 반영한 서비스 품질 차원 측정 및 이의 효과에 대한 분석이라는 측면에서 학문 및 실무적 의의가 있다.
Purpose: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Methods: Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. Results: The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. Conclusions: We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.
심층 학습 기술의 발전으로 인해 분류, 객체 검출, 분할과 같은 시각 정보를 이용한 심층 학습이 다양한 분야에서 활용되고 있다. 그 중 자율 주행은 시각 데이터를 잘 활용하는 대표적인 분야 중 하나이다. 본 논문에서는 도로 위의 사람과 운송수단 객체에 대한 개별적인 깊이 값을 예측하는 망을 제안한다. 제안하는 모델은 YOLOv3와 Monodepth를 기반으로 하며, 하드 파라미터 쉐어링을 이용한 인코더와 디코더를 통해 객체 검출과 깊이 추정을 동시에 수행한다. 또한 주의 집중 기법을 사용하여 객체 검출 및 깊이 추정의 정확도를 높이고자 하였다. 깊이 추정은 단안 이미지를 통해 이루어지며, 자가 학습 방법을 통해 학습을 수행하였다.
주식시장에 참여하는 투자자들은 크게 외국인투자자, 기관투자자, 그리고 개인투자자로 구분된다. 외국인투자자 같은 전문투자자 집단은 개인투자자 집단과 비교하여 정보력과 자금력에서 우위를 보이고 있으며, 그 결과 시장 참여자들 사이에는 외국인투자자들이 좋은 투자 성과를 보이는 것으로 알려져 있다. 외국인 투자자들은 근래에는 인공지능을 이용한 투자를 많이 하고 있다. 본 연구의 목적은 투자자별 거래량 정보와 머신러닝을 결합하는 투자전략을 제안하고, 실제 주가와 투자자별 거래량 데이터를 이용하여 제안 모형의 포트폴리오 투자 성과를 분석하는 것이다. 일별 투자자별 매수 수량과 매도 수량 정보는 한국거래소에서 공개하고 있는 자료를 활용하였으며, 여기에 인공신경망을 결합하여 최적의 포트폴리오 전략을 도출하고자 하였다. 본 연구에서는 자기 조직화 지도 모형 인공신경망을 이용하여 투자자별 거래량 데이터를 그룹화하고 그룹화한 데이터를 변환하여 오류역전파 모형을 학습하였다. 학습 후 검증 데이터 예측결과로 매월 포트폴리오 구성을 하도록 개발하였다. 성과 분석을 위해 포트폴리오의 벤치마크를 지정하였고 시장 수익률 비교를 위해 KOSPI200, KOSPI 지수 수익률도 구하였다. 포트폴리오의 동일배분 수익률, 복리 수익률, 연평균 수익률, MDD, 표준편차, 샤프지수, 벤치마크로 지정한 시가총액 상위 10종목의 Buy and Hold 수익률 등을 사용하여 성과 분석을 진행하였다. 분석 결과 포트폴리오가 벤치마크 대비 2배 수익률을 올렸으며 시장 수익률보다 좋은 성과를 보였다. MDD와 표준편차는 포트폴리오와 벤치마크가 비슷한 결과로 성과 대비 비교한다면 포트폴리오가 좋은 성과라고 할 수 있다. 샤프지수도 포트폴리오가 벤치마크와 시장 결과보다 좋은 성과를 내었다. 이를 통해 머신러닝과 투자자별 거래정보 분석을 활용한 포트폴리오 구성 프로그램 개발의 방향을 제시하였고 실제 주식 투자를 위한 프로그램 개발에 활용할 수 있음을 보였다.
자동 음성 인식(automatic speech recognition, ASR)은 딥러닝 기반 접근 방식으로 혁신되었으며, 그중에서도 자기 지도 학습 방법이 특히 효과적일 수 있음이 입증되고 있다. 본 연구에서는 다국어 ASR 시스템인 OpenAI의 Whisper 모델의 한국어 성능을 향상시키는 것을 목표하여 다국어 음성인식 시스템에서의 비주류 언어의 성능 문제를 개선하고자 한다. Whisper는 대용량 웹 음성 데이터 코퍼스(약 68만 시간)에서 사전 학습되었으며 주요 언어에 대한 강력한 인식 성능을 입증했다. 그러나 훈련 중 주요 언어가 아닌 한국어와 같은 언어를 인식하는 데 어려움을 겪을 수 있다. 우리는 약 1,000시간의 한국어 음성으로 구성된 추가 데이터 세트로 Whisper 모델을 파인튜닝하여 이 문제를 해결한다. 또한 동일한 데이터 세트를 사용하여 전체 훈련된 Transformer 모델을 베이스 라인으로 선정하여 성능을 비교한다. 실험 결과를 통해 Whisper 모델을 파인튜닝하면 문자 오류율(character error rate, CER) 측면에서 한국어 음성 인식 기능이 크게 향상되었음을 확인할 수 있다. 특히 모델 크기가 증가함에 따라 성능이 향상되는 경향을 포착하였다. 그러나 Whisper 모델의 영어 성능은 파인튜닝 후 성능이 저하됨을 확인하여 강력한 다국어 모델을 개발하기 위한 추가 연구의 필요성을 확인할 수 있었다. 추가적으로 우리의 연구는 한국어 음성인식 애플리케이션에 파인튜닝된 Whisper 모델을 활용할 수 있는 가능성을 확인할 수 있다. 향후 연구는 실시간 추론을 위한 다국어 인식과 최적화에 초점을 맞춰 실용적 연구를 이어갈 수 있겠다.
기업 의사 결정 지원을 위하여 거래 데이터를 다양한 관점에서 분석하고 활용하려는 노력과 관심들이 증가하고 있다. 이러한 노력들은 고객 관리나 마케팅에만 국한되는 것이 아니라 부정행위에 대한 감시와 탐지를 목적으로도 다양한 분석 방안들이 연구되고 있다. 부정행위는 기술의 발전을 악용하여 다양한 형태로 진화하고 있으며, 이에 따라 목적에 맞는 부정탐지 방안 연구와 적용을 통하여 탐지 효용의 극대화를 위한 노력의 필요성이 증가하고 있다. 이러한 연구 동향의 일환으로 본 연구에서는 대용량 거래 데이터가 저장 관리되고 있는 국내 최대 농수산물 유통 시장의 2008년부터 2010년까지 상장예외품목의 거래 가격을 분석하여 부정 탐지 규칙을 도출하였으며, 전문가 검증을 통하여 도출 된 규칙의 신뢰성을 확보하였다. 본 연구의 주요 부정거래 분석 방안으로는 정상적인 데이터들은 발생 확률이 높은 반면에 특이한 데이터들의 발생 확률은 낮다고 가정하는 통계적 접근을 통한 이상치 식별 방안을 활용하였다. 이에 따라 부정거래 분석 별로 정의 된 Z-Score 값보다 클 경우 부정거래 탐지 대상이 된다. 다만 상장예외품목 거래의 경우 취급 가능한 중도매인의 수가 제한되어 있으며, 일반적인 상장품목의 거래보다 거래량이 적기 때문에 소수의 이상치가 품목의 평균에 미치는 영향이 크다. 그 예로 다른 소수의 중도매인들이 해당 품목을 정상적인 가격에 거래하였더라도, 특정한 중도매인 한 명이 지나치게 비정상적인 가격에 거래할 경우 모든 거래들이 부정거래로 탐지 될 가능성도 있다. 이러한 문제를 해결하기 위하여 기존의 Z-Score의 개념을 활용하여 수정된 Z-Score(Self-Eliminated Z-Score)를 사용하였다. 또한 부정 유형별 탐지 규칙 관리와 활용을 위한 시스템 프로토타입(prototype) 개발을 수행하였다. 이를 통하여 실제 부정거래 탐지 업무에 적용할 수 있는 효과적인 방안을 제시하였고, 농수산 유통시장의 공정성 및 투명성 확보를 위한 관리 감독의 기능 강화가 가능할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.