
ABSTRACT
Purpose: The aim of the current study was to develop a computer-assisted detection system 
based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential 
usefulness and accuracy of this system for the diagnosis and prediction of periodontally 
compromised teeth (PCT).
Methods: Combining pretrained deep CNN architecture and a self-trained network, 
periapical radiographic images were used to determine the optimal CNN algorithm and 
weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, receiver operating characteristic (ROC) curve, area under the 
ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our 
deep CNN algorithm, based on a Keras framework in Python.
Results: The periapical radiographic dataset was split into training (n=1,044), validation 
(n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy 
for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars 
that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% 
(95% CI, 70.1%–91.2%) for premolars and 73.4% (95% CI, 59.9%–84.0%) for molars.
Conclusions: We demonstrated that the deep CNN algorithm was useful for assessing the 
diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset 
and improvements in the algorithm, a computer-aided detection system can be expected to 
become an effective and efficient method of diagnosing and predicting PCT.

Keywords: Artificial intelligence; Machine learning; Periodontal diseases;  
Supervised machine learning

INTRODUCTION

Periodontal disease (PD), in its acute and chronic forms, constitutes a widespread intraoral 
pathology and the sixth most common type of inflammatory disease [1]. The continuous 
progression of PD results in the destruction of all periodontal supporting tissues, including the 
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alveolar bone, gingiva, and periodontal ligaments around the tooth, and PD has been reported 
to be the most widespread cause of tooth loss in adults [2,3]. Many epidemiological and 
experimental studies have shown that systemic chronic inflammation caused by periodontal 
pathogens is a risk factor or risk indicator for comorbid diseases, such as cardiovascular 
disease, diabetes mellitus, obesity, osteoporosis, erectile dysfunction, and cancer [4-8].

Various non-surgical and surgical methods have been devised and improved for the treatment 
of periodontally compromised teeth (PCT) and supporting structures, and numerous studies 
have also been conducted on regenerative periodontal tissues [9,10]. Despite advances in 
treatment modalities, there has not yet been a significant improvement in the methodology 
for diagnosing and predicting PCT. Although panoramic/periapical radiographs and 
periodontal probes, which are widely used as objective diagnostic tools for diagnosing and 
predicting PCT, are used in conventional periodontal examinations, clinical diagnostic and 
prognostic judgment depends heavily on empirical evidence [11].

Convolutional neural networks (CNNs), which are the latest, core model of artificial neural 
networks and deep learning in computer vision, have developed rapidly since roughly 2010 [12]. 
Since medical data are digitally stored and accumulated quantitatively and qualitatively, deep 
CNNs with computer-aided detection (CAD) systems have clear opportunities to be applied 
in the medical field, and this very fast-growing new area of research has yielded impressive 
results in terms of diagnosis and prediction in radiological and pathological research [13,14]. 
Therefore, most recently reported artificial intelligence performance has been based on deep 
learning and was developed mainly for medical image classification [15,16].

Although radiographic image analysis is conventionally and widely used to diagnose and 
predict PD, it still tends to be used as an auxiliary means of clinical diagnosis and prediction, 
and studies on the diagnosis of PCT using deep CNNs with CAD are limited [17]. Therefore, 
the purpose of the current study was to evaluate the potential usefulness and accuracy of 
deep CNN algorithms for diagnosing and predicting PCT.

MATERIALS AND METHODS

Dataset collection
This study was approved by the Institutional Review Board of Daejeon Dental Hospital, 
Wonkwang University (approval No. W1723/001-001), and was carried out at the Department 
of Periodontology, Daejeon Dental Hospital, Wonkwang University. We collected periapical 
radiographic datasets between January 2015 and December 2016, and all images were de-
identified. Periapical radiographs of patients with PD and those aged 12 years or younger, as 
well as images with severe noise or haziness or showing teeth that were partially present or 
severely distorted, were excluded. Teeth with more than 4 roots, those that had undergone 
root canal treatment, those that had undergone apical surgery with root resection, those with 
moderate to severe caries, those with a full restorative crown, and teeth with a shape that 
deviated from normal anatomical structures were also excluded.

Diagnosis and prediction of PCT
All periapical radiographic datasets and electronic dental records were evaluated by 3 calibrated 
board-certified periodontists, who collected, deciphered, and categorized them to determine 
the severity of PCT. All periapical radiographs for which the diagnosis of the 3 examiners did 
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not agree were excluded. Teeth with a clinical attachment level (CAL) of less than 3 mm in a 
clinical examination using a World Health Organization-standardized community periodontal 
index probe were classified as healthy teeth. Teeth with bleeding on probing during the clinical 
examination and a CAL of less than 6 mm or a bone loss of less than 4 mm on radiography 
were classified as moderate PCT, and teeth with a CAL of greater than 6 mm and a bone loss 
of more than 4 mm were classified as severe PCT [18,19]. Among severe PCT, teeth that were 
extracted immediately after clinical and radiological examinations or during the follow-up 
period of 3 months were defined as hopeless teeth. Because the differential diagnosis between 
healthy teeth and incipient PCT was made using only periapical radiographs, this study did not 
diagnose or distinguish between healthy teeth and incipient PCT.

Preprocessing and image augmentation
All the selected periapical radiographic images were cropped and resized to 224×224 pixels 
(from the original 1,440×1,920 pixels), and converted into PNG format. In addition, all the 
maxillary teeth were vertically flipped to the form of mandibular teeth. A pretrained VGG-
19 network was used for preprocessing, and the dataset was augmented using the Keras 
framework based on the ImageDataGenerator function [20]. This was randomly performed 
with a rotation range of 15°, a width and height shift range of 0.1, a shear range of 0.5, and 100 
images were generated for each tooth to obtain a total of 104,400 training dataset images.

Architecture of the deep CNN algorithm
CNN is a type of machine learning that is used in various fields, especially in image and 
sound recognition. Deep CNNs imitate the connectivity patterns of neurons in the animal 
visual cortex. CNNs consist of 1 or more convolutional layer, a pooling layer, and a fully 
connected layer. Every convolutional layer responds to stimuli only in a restricted region 
of the visual field known as the receptive field. This structure is distinguished from 
conventional image classification algorithms and other deep learning algorithms, since CNN 
can learn the type of filter that is hand-crafted in conventional algorithms.

This study used 16 convolutional layers and 3 fully connected dense layers; this network is 
illustrated in Figure 1. Each convolutional layer was designed with a kernel size of 3×3 pixels, 
the same padding, and a rectified linear unit activation function. The maximum pooling 
layers were designed with strides of 2×2 pixels. After extracting the feature quantities of 
images using convolutional layers, we used the maximum pooling layers to reduce the 
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Figure 1. Overall architecture of the deep CNN model. The dataset for the PCT images (224×224 pixels) is labeled as the input. Each of the convolutional layers 
is followed by a ReLU activation function, dropout, maximum pooling layers, and 3 fully connected layers with 1,024, 1,024, and 512 nodes, respectively. The final 
output layer performs 3 classifications using the Softmax function. 
CNN: convolutional neural network, PCT: periodontally compromised tooth, ReLU: rectified linear unit.

https://jpis.org


position sensitivity problem and to allow for more generic recognition capability. Next, 3 fully 
connected deep hidden layers with 1,024, 1,024, and 512 nodes, respectively, were connected 
to remove spatial information and to statistically determine the key classification of PCT 
[21]. Dropout, which is a typical method of regularization (rescaling the deep CNN weights 
to a more effective range), was set to 0.5, and the final output layer was classified in terms of 
PCT using the Softmax classifier [22]. A total of 500 epochs were used and training network 
weights were learned using the Adam algorithm (learning rate=0.0001), a stochastic gradient 
descent method [23]. To produce better diagnosis and prediction of PCT, after 20 epochs 
of this training phase, fine-tuning was performed in order to optimize the weights and to 
improve the results by adjusting the hyperparameters of layers [24,25].

Statistical analysis
A randomization sequence was generated using the RAND function in the Excel spreadsheet 
(Microsoft Corporation, Redmond, WA, USA), and used to divide the periapical radiographic 
image dataset into a training dataset (n=1,044; 60%), a validation dataset (n=348; 20%), 
and a test dataset (n=348; 20%). The training and validation datasets were directly used to 
analyze the PCT and supporting structures, and then to create optimal weights for a deep 
CNN algorithm model. The test dataset was used to calculate the chi-square, diagnostic 
and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive 
value, receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), and 
confusion matrix using our deep CNN algorithm, based on a Keras framework in Python 
(Python 3.6.1, Python Software Foundation, Wilmington, DE, USA). The 95% confidence 
intervals (CIs) were calculated. P values of less than 0.05 were considered to indicate 
statistical significance.

RESULTS

Baseline characteristics
The baseline characteristics of the study population are presented in Table 1. A total of 651 
subjects participated in the present study, consisting of 363 (55.8%) males and 288 (44.2%) 
females. In terms of age, the number of individuals in their 20s was the smallest (n=22; 3.4%), 
and the number of those in their 60s was the highest (n=216; 33.2%). The dataset consisted of a 
total of 1,740 periapical radiographic images of 447 (25.7%) maxillary premolars, 450 (25.9%) 
maxillary molars, 403 (23.2%) mandibular premolars, and 440 (25.3%) mandibular molars. 
There were 264 (15.2%) premolars and 394 (16.9%) molars that were diagnosed as healthy 
teeth, 265 (15.2%) premolars and 297 (17.1%) molars diagnosed as moderate PCT, and 322 
(18.5%) premolars and 298 (17.1%) molars that were diagnosed as severe PCT.

Diagnosis of PCT
Figure 2 shows the confusion matrix, with and without normalization, showing the results 
of the classification of PCT. The diagonal elements are the number of points where the 
predicted label was the same as the actual label, while the non-diagonal elements were 
misinterpreted by the classifier. The higher the classification value and the darker the 
shade of blue, the more accurate was the diagnosis. For premolars, the total diagnostic 
accuracy was 81.0%, the diagnostic accuracy was the highest for severe PCT (82.8%), and 
the diagnostic accuracy was the lowest for moderate PCT (77.3%). For molars, the total 
diagnostic accuracy was 76.7%, the diagnostic accuracy was the highest for severe PCT 
(81.3%), and the diagnostic accuracy was the lowest for moderate PCT (70.3%).
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Prediction of hopeless teeth
The accuracy of predicting extraction was evaluated and compared between the CNN and 
blinded board-certified periodontists using 64 premolars and 64 molars diagnosed as severe 
PCT in the test dataset. For premolars, the deep CNN had an accuracy of 82.8% (95% CI, 
70.1%–91.2%) and an AUC of 82.6% (95% CI, 71.1%–91.1%), while the corresponding values 
for the periodontists were 79.7% (95% CI, 66.7%–88.5%) and 79.3% (95% CI, 67.4%–88.4%), 
respectively. Thus, the deep CNN had a higher AUC value, but there was no statistically 
significant difference in the predictive accuracy between the 2 methods (P=0.150). For 
molars, the deep CNN had an accuracy of 73.4% (95% CI, 59.9%–84.0%) and an AUC of 
73.4% (95% CI, 60.9%–83.7%), while the corresponding values for the periodontists were 
76.6% (95% CI, 63.2%–86.5%) and 76.4% (95% CI, 64.1%–86.1%), respectively. Thus, the 
periodontists had a higher AUC value, but as with the premolars, there was no statistically 
significant difference in predictive accuracy between the 2 methods (P=0.151, Table 2).

DISCUSSION

Recently, several studies have investigated the potential usefulness and accuracy of artificial 
intelligence approaches in interpreting medical images, such as clinical photographs, X-rays, 
computed tomography (CT), magnetic resonance imaging (MRI), and positron emission 
tomography scans. In particular, the deep CNN algorithm has been used most commonly and 
has yielded promising results [26-28]. Consequently, in this study, supervised deep learning, 
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Table 1. Study population and baseline characteristics of the patients and teeth
Characteristics Training dataset Validation dataset Test dataset P value
Patients 351 (100) 149 (100) 151 (100)
Sex 0.590

Male 190 (54.1) 88 (59.1) 85 (56.3)
Female 161 (45.9) 61 (40.9) 66 (43.7)

Age group (yr) 0.349
20–29 11 (3.1) 6 (4.0) 5 (3.3)
30–39 12 (3.4) 12 (8.1) 14 (9.3)
40–49 44 (12.5) 21 (14.1) 24 (15.9)
50–59 111 (31.6) 41 (27.5) 39 (25.8)
60–69 121 (34.5) 46 (30.9) 49 (32.5)
≥70 52 (14.8) 23 (15.4) 20 (13.2)

Teeth 1,044 (100) 348 (100) 348 (100)
Position

Maxilla 0.914
Premolar 261 (25.0) 87 (25.0) 99 (28.4)
Molar 264 (25.3) 91 (26.1) 95 (27.3)

Mandible 0.690
Premolar 253 (24.2) 81 (23.3) 69 (19.8)
Molar 266 (25.5) 89 (25.6) 85 (24.4)

Classification of diagnosis
Healthy teeth 0.319

Premolar 151 (14.5) 53 (15.2) 60 (17.2)
Molar 182 (17.4) 60 (17.2) 52 (14.9)

Moderate PCT 0.325
Premolar 169 (16.2) 52 (14.9) 44 (12.6)
Molar 180 (17.2) 53 (15.2) 64 (18.4)

Severe PCT 0.615
Premolar 194 (18.6) 64 (18.4) 64 (18.4)
Molar 168 (16.1) 66 (19.0) 64 (18.4)

Values are presented as number (%).
PCT: periodontally compromised teeth.
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based on the CNN algorithm, was performed using a prelabeled periapical radiographic 
dataset. We also confirmed that the results had similar diagnostic and predictive accuracy to 
those obtained by board-certified periodontists.

The present study found that the deep CNN algorithm had higher diagnostic accuracy for 
identifying PCT among premolars than among molars. Although we excluded abnormal 
anatomical variations to minimize the complexity as much as possible, these findings may be 
due to the higher efficiency of deep learning for premolars, which normally have 1 root, than 
for mandibular molars with 2 roots or for maxillary molars with 3 roots. In addition, there was a 
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Figure 2. Multiclass classification confusion matrix with and without normalization using a deep CNN classifier. 
The diagonal elements are the number of points where the predicted label was the same as the actual label, 
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darker the shade of blue, the more accurate the diagnosis of health and periodontally compromised teeth (A, B) 
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CNN: convolutional neural network.

Table 2. Pairwise comparison between the deep CNN algorithm and periodontists for the prediction of hopeless teeth
Variables Accuracy (%, 95% CI) AUC (%, 95% CI) Difference (%, 95% CI) P value
Premolar 3.3 (−1.2–7.8) 0.150

Deep CNN 82.8 (70.1–91.2) 82.6 (71.1–91.1)
Periodontist 79.7 (66.7–88.5) 79.3 (67.4–88.4)

Molar 2.9 (−1.0–6.9) 0.151
Deep CNN 73.4 (59.9–84.0) 73.4 (60.9–83.7)
Periodontist 76.6 (63.2–86.5) 76.4 (64.1–86.1)

CNN: convolutional neural network, AUC: area under the receiver operating characteristic curve, CI: confidence interval.

https://jpis.org


tendency to judge PCT as more severe. The diagnostic accuracy for severe PCT was the highest 
overall, and the trained deep CNN algorithm was better optimized for the detection of severe 
PCT. Further studies on the mechanisms underlying deep CNN algorithms are necessary.

Distinguishing between PD and dental caries is crucial, and edge detection needs to be good 
in cases of destructive PD in order to improve the diagnostic and predictive accuracy for PCT. 
Unlike traditional shallow learning algorithms, deep CNN algorithms can automatically learn 
hierarchical feature representations and capture regional patterns from PCT images in their 
multiple convolutional and hidden layers. Wang [29] reported that deep CNN algorithms could 
efficiently perform edge detection with only 2 convolutional layers and 1 fully connected hidden 
layer. Therefore, as deep CNN architecture has a structurally powerful advantage in solving the 
detection problem, it was chosen for use in the present study [29,30].

The deep CNN algorithm used in the current study was designed based on the VGG-19 
network architecture. This architecture, which consists of 16 convolution layers and 2 fully 
connected layers, is ideal for deep learning and very effective at solving object detection and 
image classification problems in complex non-medical image data [22,31]. However, since 
it is necessary to classify black-and-white PCT images of similar size and shape, a potential 
issue with the VGG-19 network architecture was thought to be that, without correction, 
learning efficiency might be reduced and the possibility of overfitting might be markedly 
increased. Therefore, we modified the VGG-19 network architecture by adjusting the number 
of convolutional and hidden layers and hyperparameters, including the number of epochs, 
batch size, loss function, optimizer, momentum, and learning rate, to reduce overfitting as 
much as possible and to facilitate efficient deep learning performance [32].

Fast and accurate diagnosis and prediction is an important element of PD treatment, and 
optimizing speed and accuracy is an ongoing research problem in CAD. Three principal 
factors complicate this task. The first limitation of this study is that relatively few images 
of PCT, including premolars and molars, were used. In order to achieve superior artificial 
intelligence performance with deep learning, the design of the deep CNN algorithm itself is 
important, but it is also important to use a high-quality training dataset. In a recent study of 
the detection of diabetic retinopathy, 54 ophthalmologists repeatedly read 130,000 fundus 
photographs [27]. In another study of the diagnosis of skin cancer, 18 doctors systematically 
read 130,000 digital skin images of over 200 skin diseases as a learning dataset [33].

Since unsupervised or semi-supervised deep learning algorithms, including the generative 
adversarial network (GAN) and reinforcement learning, which do not use any pretrained 
dataset, have been developing rapidly in recent years, the importance of the training dataset 
itself is decreasing. Nevertheless, maintaining and securing a high-quality dataset is still 
important for the deep learning approach. Therefore, to overcome the limitation of the 
number of images required for deep learning, we collected only high-quality images that were 
most clearly classified by the 3 experienced periodontists. In addition, learning transfer and 
preprocessing techniques, including image augmentation and enhancement, were used to 
avoid overfitting and to normalize the model [34].

Another limitation is that it is impossible to make a complete diagnosis and prediction of 
PD using only 2-dimensional periapical radiographs. For a more accurate diagnosis and 
prediction of PD, it is necessary to comprehensively review radiographic and clinical data, 
such as the patient's history, clinical probing depth, CAL, bleeding on probing, mobility, 
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percussion, and electric pulp test. Therefore, a deep CNN algorithm using periapical 
radiographic images alone does not provide sufficient evidence, although it may still be used 
as a reference for the diagnosis and prediction of PCT. Nonetheless, a 3-dimensional deep 
CNN algorithm using CT and MRI data was implemented in this study, and models related to 
this algorithm were developed and refined further in this study. A 3-dimensional deep CNN 
algorithm will be even more helpful for sophisticated and effective diagnosis and prediction.

As a final limitation, a number of previous deep CNN studies have used downscaled low-
resolution medical images instead of high-resolution large matrix images due to limitations 
of computing power, storage space, cost, and training time. The images used in the 
present study were also cropped and resized to 224×224 pixels, due to practical constraints. 
Therefore, the use of a low-resolution dataset in this study is considered to have reduced the 
accuracy of the diagnosis and prediction of PCT [28].

Currently, deep learning algorithms are being developed and improved, with remarkable 
accuracy in diagnosis and prediction, particularly in the fields of radiology and pathology. 
In the present study, we evaluated the potential effectiveness of a deep CNN algorithm for 
diagnosing and predicting PCT, and demonstrated that it was as effective as experienced 
periodontists for positively diagnosing and predicting PCT. Through the continuous 
accumulation of high-quality image datasets and by applying improved algorithms, CAD is 
expected to become an effective and efficient method of diagnosing and predicting PCT.
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