• Title/Summary/Keyword: Self-reinforced Microstructure

Search Result 10, Processing Time 0.026 seconds

Preparation of Silicon Carbide Ceramics with Self-reinforced Microstructure by the Control of Starting Phases (출발상 제어에 의한 자기복합화 미세구조의 탄화규소 세라믹스 제조)

  • Lee, Jong-Kook;Kang, Hyun-Hee;Lee, Eun-Gu;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1240-1246
    • /
    • 1997
  • Silicon carbides with self-reinforced microstructure which hore a small grain matrix and dispersed large grains with rod-like type were prepared by the liquid-phase sintering and the control of starting phases of raw materials. The specimens with self-reinforced microstructure could be obtained from the compacts with mixed compositions of $\alpha$-SiC and 10-50 % $\beta$-SiC powders and by the pressureless sintering at 185$0^{\circ}C$ for 5h. Large grains with rod or plate-like types were 4H-SiC and small grains with equi-axed type were 6H-SiC. Fracture grains with rod or plate-like types were 4h-SiC and small grains with equi-axed type were 6H-SiC. Fracture toughness of specimens with self-reinforced microstructure was increased by the crack deflection and formation of microcracking due to the existence of rod-like large grains during crack propagation.

  • PDF

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Microstructure and Mechanical Properties of Self-Reinforced Si3N4 Ceramic Prepared by Pressureless-Sintering (상압소결에 의해 제조한 자체 강인화 질화규소 세리믹의 미세조직과 기계적 성질)

  • 김완중;이영규;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.547-554
    • /
    • 1999
  • The self-reinforced Si3N4 ceramics were prepared by pressureless-sintering using ${\beta}$-Si3N4 whiskers as a seed. Effects of ${\beta}$-Si3N4 whiskers on microstructure and mechanical properties and the ${\alpha}$ to ${\beta}$ phase transition of Si3N4 were investigated. The self-reinforced Si3N4 ceramics were densified(relative density$\geq$98%) by pressureless-sintering (1800$^{\circ}C$ 2h) using 8mol% Y2O3 and 6mol% Al2O3 as sintering aids and 5 vol% ${\beta}$-Si3N4 whiskers within self-reinforced Si3N4 ceramic seemed to hinder the densification owing to their acicular shapes but accelerated the ${\alpha}$ to ${\beta}$ phase transition because they acted as pre-existing nuclei. It was found that the more ${\beta}$-Si3N4 nucei the faster ${\alpha}$ to ${\beta}$ phase transition.

  • PDF

Preparation of Self-reinforced Silicon Carbide Ceramics by Hot Pressing (가압소결에 의한 자체강화 탄화규소 세라믹스의 제조)

  • Park, Jong-Gon;Lee, Jong-Kook;Seo, Dong-Seok;Kim, Min-Jeong;Lee, Eun-Gu;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1356-1363
    • /
    • 1999
  • Self-reinforced silicon carbide was prepared by hot pressing and the control of starting phases of raw materials and its microstructural characteristics was investigated. The specimens with self-reinforced microstructure were obtained from the compacts with mixed compositions of ${\alpha}$-and ${\beta}$-SiC powders. Self-reinforced microstructure which is composed of large dispersed grains with rod-like shape and matrix with small equiaxed grains was formed by the transformation to the ${\alpha}$-SiC with 4H polytype for ${\beta}$-SiC and anisotropic grain growth during the heat treatment. Of all speimens the values of volume fraction maximum length and aspect ratio for large grains with rode-like types were the highest at the specimen with 50 vol% ${\beta}$-SiC in the starting SiC powder and therefore this specimen showed the highest fracture toughness due to the crack deflection by rod-like grains during crack propagation.

  • PDF

Effect of TempCore Processing on Microstructure and Mechanical Properties of 700 MPa-Grade High-Strength Seismic Resistant Reinforced Steel Bars (700 MPa급 고강도 내진 철근의 미세조직과 기계적 특성에 미치는 템프코어 공정의 영향)

  • Shin, S.H.;Kim, S.K.;Lim, H.G.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.91-98
    • /
    • 2021
  • The present study deals with the microstructure and mechanical properties of 700 MPa-grade high-strength seismic resistant reinforced steel bars fabricated by various TempCore process conditions. For the steel bars, in the surface region tempered martensite was formed by water cooling and subsequent self-tempering during TempCore process, while in the center region there was ferrite-pearlite or bainite microstructure. The steel bar fabricated by the highest water flow and the lowest equalizing temperature had the highest hardness in all regions due to the relatively fine microstructure of tempered martensite and bainite. In addition, the steel bar having finer microstructures as well as the high fraction of tempered martensite in the surface region showed the highest yield and tensile strengths. The presence of vanadium precipitates and the high fraction of ferrite contributed to the improvement of seismic resistance such as high tensile-to-yield strength ratio and high uniform elongation.

Investigation of Through-thickness Microstructural Evolution in a 600 MPa-Grade Reinforced Steel Bar Manufactured by Tempcore Process (Tempcore 공정을 통해 제조된 600 MPa급 철근의 두께방향 미세구조 변화 분석)

  • Jiwon Park;Hyunji Kim;Singon Kang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.367-373
    • /
    • 2023
  • 600 MPa-grade deformed bar samples were manufactured by conventional hot rolling and subsequent Tempcore heat treatment processes. Considering the short-time water quenching step of the Tempcore process for hot-rolled steel, it is inevitable that the temperature profile of the deformed bar depends strongly on its position throughout the sample thickness. As a result, its microstructure can be easily divided into two regions, the surface and the core regions. The former is expected to have a fresh martensite microstructure under rapid cooling conditions, but self-tempering occurs due to the intense heat flow from the hot core region after the process. The latter is generally known to exhibit a mixed microstructure of ferrite and pearlite due to its slow cooling rate. In this study, detailed microstructural evolutions were examined through the thickness direction. The large variation of the microstructure through the thickness direction in the deformed bar samples is partly due to the easy carbon diffusion from the limited additions of alloying elements.

Multiple Scale Processes in Microstructural Evolution: Case Study of Self-Reinforced β-Si3N4

  • Becher, Paul F.
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.575-580
    • /
    • 2016
  • Microstructural design of ceramics has generally focused on information gathered at the micro- and macro-scales and related this to how specific properties could be improved. Ceramic processing serves as the key to optimizes the final microstructure. However, the advent of nano-scale microstructures and highly advanced characterization tools are forcing us to develop new knowledge of what is occurring not just at the micro-scale but also at the atomic level. Thus we are now beginning to be able to address how microstructure is influenced by events at the atomic scale using atomic scale images and data. Theoreticians have joined us in interpreting the mechanisms involved in the "microstructural" evolution at multiple scales and how this can be used to enhance specific properties of ceramics. The focus here is on delving into the various layers the "microstructure" in order understand how atomic-scale events influence the structure and properties of ceramics.

Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method (고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

Characterization of TiC/Mg Composites Fabricated by in-situ Self-propagating High-temperature Synthesis followed by Stir Casting Process (자전연소합성법 및 교반주조 공정으로 제조된 TiC/Mg 금속복합재료의 특성연구)

  • Lee, Eunkyung;Jo, Ilguk
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.256-261
    • /
    • 2020
  • In this study, the ignition temperature of the Al-Ti-C reaction system, the microstructure and the mechanical properties of the TiC/Mg composite which produced by the self-propagating high-temperature synthesis (SHS) followed by stir casting process were investigated. Mg based composite with uniformly dispersed 0, 10, 20, and 30 vol.% TiC were fabricated, and higher volume fraction of TiC reinforced composite showed superior compressive strength and wear resistance as compared with Mg matrix. It is attributed to the less contamination, defects, impurities in TiC/Mg composite by the in-situ SHS yield effective load transfer from the matrix to the reinforcement.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.