• 제목/요약/키워드: Self-propagating reaction

검색결과 95건 처리시간 0.031초

BSCCO Superconducting Powder by SHS

  • Soh, Dea-Wha;Cho, Yong-Joon;Korobova, N.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.99-102
    • /
    • 2002
  • The BSCCO superconductor materials of using Self-propagating High-temperature Synthesis (SHS) were studied. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product. In this paper as an effort for fabricating the SHSed BSCCO superconductor powder SHS method was considered to application in the synthesis of superconducting materials.

  • PDF

마그네트론 스퍼터링법을 이용한 Al-Ni Nano-foils의 형성 기구 및 미세구조 특성

  • 유광춘;이원범;조용기;유세훈;김형순
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.175-175
    • /
    • 2013
  • Al-Ni nano-foil은 상온에서 외부 방전 및 촉발에 따라 급속한 자기 발열 반응이 일어나는 특성을 보이며, 외부 촉발을 통해 상온에서 온도를 높일 수 없는 접합이나 마이크로 수준의 미세 접합이 가능한 접합재료로서 현재 상당한 기대가치를 갖고 있는 재료이다. 코팅기술로서 sputtering법을 이용하여 Al-Ni 다층막의 nano-foil를 제조하여 Al-Ni 혼합 비율 및 Bi-layer 수에 따른 self-propagating reaction에 대해 조사하였다.

  • PDF

고에너지볼밀링을 이용한 MnFeP1-xAsx 나노분말의 합성 (Synthesis of MnFeP1-xAsx Nanocrystalline Powders by High-Energy Ball Milling)

  • 조영환
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.129-135
    • /
    • 2003
  • Nanocrystalline powders of $MnFeP_{1-x}As_x$(x=0.45-0.6) have been synthesized by mechanochemical reaction at room temperature using high-energy ball milling from mixtures of Mn, Fe, P, and As Powders. It has been found that a mechanically induced self-propagating reaction (MSR) occurs within 2 hours of milling and it produces very fine polycrystalline powder having a hexagonal $Fe_2P$ structure. Further milling up to 24 hours did not change the crystalline and average particle sizes or the phase composition of the milling product. When x is 0.65, no reaction among the reactants has been observed even after 24 hours of milling. As the P content decreases in $MnFeP_{1-x}As_x$, the incubation time for the MSR has increased and the lattice constants in both a and c axes have changed.

Ti-Al-C 합금의 고온 자전 합성 반응시 생성상에 관한 연구 (A Study on the Formation Phase of Self-propagating High-temperature Synthesis of Ti-Al-C alloys)

  • 문종태
    • 한국분말재료학회지
    • /
    • 제2권2호
    • /
    • pp.149-157
    • /
    • 1995
  • In this study, an attempt was made to fabricate TiAl as well as its in situ composite via combustion synthesis. The processing variable of the combustion synthesis which include aluminum content and the heating rate were found to affect the combustion temperature. The combustion temperature measured, however, was lower than the melting temperature of TiAl and the reaction product were found to include incomplet reaction products. Carbon was added in order to increase the combustion temperature as well as to form in situ reinforcements. The reaction products showed homogeneous microstructures with carbide phases formed within indicating that the addition of carbon increased the combustion temperature above the melting temperature of TiAl.

  • PDF

자전고온반응에 의한 금속간화합물/금속 적층복합재료의 제조공정변수가 미세조직에 미치는 영향 (The Effect of Fabrication Process Parameters on the Microstructures of Intermetallic/Metal Laminated Composite by Self-propagating High-temperature Synthesis)

  • 김희연;정동석;홍순형
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.68-74
    • /
    • 2003
  • 본 논문에서는 Ni과 Al 금속박판 사이의 자전고온반응을 이용한 금속간화합물/금속 적층복합재료의 제조시 제조공정 조건이 최종 미세조직에 미치는 영향을 연구하였다. 열분석을 통하여 Ni과 Al사이의 반응은 먼저 NiA1$_3$가 핵생성­성장 기구에 의해 생성된 후 다시 Ni$_2$A1$_3$로 확산변태됨을 확인하였다. 자전고온반응을 열역학적으로 해석하여 금속박판의 두께비(Ni:Al) 및 반응전 열처리와 반응후 미세조직에서 잔류한 Al의 부피분율과의 관계를 정립하였다. 후열처리 공정에 의해 Ni/Nl$_3$Al/NiAl의 적층구조와 각 두께비에서 82%(1:1), 59.5%(2:1), 40%(4:1)의 부피분율을 가지는 금속간화합물/금속적층복합재료를 얻을 수 있었다.

기계적 합금화과정에서의 in situ 열분석에 의한 Ti-50.0~66.7at%Si 분말의 합성거동 (Synthesis Behavior of Ti-50.0 ~ 66.7at%Si Powders by In situ Thermal Analysis during Mechanical Alloying)

  • 변창섭;이상호;이원희;현창용;김동관
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.310-314
    • /
    • 2004
  • Mechanical alloying (MA) of Ti-50.0~66.7at%Si powders was carried out in a high-energy ball mill, and in situ thermal analysis was also made during MA. In order to classify the synthesis behavior of the powders with respect to at%Si, the synthesis behavior during MA was investigated by in situ thermal analysis and X-ray diffraction (XRD). In situ thermal analysis curves and XRD patterns of Ti-50.0~59.6at%Si powders showed that there were exothermic peaks during MA, indicating TiSi, $TiS_2$, and $Ti_{5}$ $Si_4$ phase formation by a rapid exothermic reaction of self-propagating high-temperature synthesis (SHS). Those of Ti-59.8~66.7 at%Si powders, however, showed that there were no peaks during MA, indicating any Ti silicide was not synthesised until MA 240 min. For Ti-50.0~59.6at%Si powders, the critical milling times for SHS increased from 34.5 min to 89.5 min and the temperature rise, $\Delta$T (=peak temperature-onset temperature) decreased form $26.2^{\circ}C$ to $17.1^{\circ}C$ as at%Si increased. The critical composition of Si for SHS reaction was found to be 59.6at% and the critical value of the negative heat of formation of Ti-59.6at%Si to be -1.48 kJ/g.

자전연소합성법에 의한 ZrB2 세라믹분말합성 및 NaCl의 영향 (Preparation of ZrB2 by Self-propagating Synthesis and Its Characteristics)

  • 김진성;;원창환
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.255-258
    • /
    • 2014
  • Zirconium boride is an artificial or which is rarely found in the nature. $ZrB_2$ is popular in the hard material industry because it has a high melting point, excellent mechanical properties and chemical stability. There are two known methods to synthesize $ZrB_2$. The first involves direct reaction between Zr and B, and the second is by reduction of the metal halogen. However, these two methods are known to be unsuitable for mass production. SHS(Self-propagating High-temperature Synthesis) is an efficient and economic method for synthesizing hard materials because it uses exothermic reactions. In this study, $ZrB_2$ was successfully synthesized by subjecting $ZrO_2$, Mg and $B_2O_3$ to SHS. Because of the high combustion temperature and rapid combustion, in conjunction with the stoichiometric ratio of $ZrO_2$, Mg and $B_2O_3$; single phase $ZrB_2$ was not synthesized. In order to solve the temperature problem, Mg and NaCl additives were investigated as diluents. From the experiments it was found that both diluents effectively stabilized the reaction and combustion regime. The final product, made under optimum conditions, was single-phase $ZrB_2$ of $0.1-0.9{\mu}m$ particle size.

고농도 과산화수소와 수소화물의 지속적인 반응에 대한 연구 (Feasibility of Energy Generation from Chemical Reaction between Hydrogen Peroxide/Hydride)

  • 서성현
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.271-277
    • /
    • 2015
  • The present paper discusses about noble idea on various reactions including hydrides, hydrogen peroxide and nano-sized metal powders, which do not emit toxic materials as well as carbon dioxide. Here in this paper, the very first-ever concept that heat energy can be generated from the direct reaction between sodium borohydride and hydrogen peroxide is presented. Sodium hydride as fuel can supply hydrogen reacting with oxygen provided by the decomposition of hydrogen peroxide solution. Solid sodium borohydride can be resolved in water and treated as liquid solution for the easy handling and the practical usage although its solid powder can be directly mixed with hydrogen peroxide for the higher reactivity. The thermodynamic analysis was conducted to estimate adiabatic reaction temperatures from these materials. The preliminary experiment on the reactions conducted using sodium borohydride powder and hydrogen peroxide water solution revealed that the self-propagating reaction can occur and that its reactivity increases with an increase of hydrogen peroxide concentration.

알루미늄 용탕에서 Al-TiO2-C의 연소합성반응에 의한 in-situ Al/TiC 복합재료의 제조에 미치는 공정변수의 영향 (Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO2-C Powder Mixtures)

  • 김화정;이정무;조영희;김종진;김수현;이재철
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.677-684
    • /
    • 2012
  • A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of $Al-TiO_2-C$ pellet was directly added into an Al melt at $800-920^{\circ}C$ to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in $1-2{\mu}m$ at the melt temperature above $850^{\circ}C$. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, $Al_3Ti$. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

Three-Dimensional Numerical Analysis for Detonation Propagating in Circular Tube

  • Sugiyama, Yuta;Matsuo, Akiko
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.364-370
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.

  • PDF