• Title/Summary/Keyword: Self-propagating High-temperature Synthesis (SHS) reaction

Search Result 69, Processing Time 0.021 seconds

Thermal Stability and Properties of Cu-$TiB_2$ Nanocomposites Prepared by Combustion Synthesis and Spark-plasma Sintering

  • Kwon, Dae-Hwan;Nguyen, Thuy Dang;Dudina, Dina;Kum, Jong-Won;Choi, Pyuck-Pa;Kim, Ji-Soon;Kwon, Young-Soon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1203-1204
    • /
    • 2006
  • Cu-$TiB_2$ nanocomposite powders were synthesized by combining high-energy ball-milling of Cu-Ti-B mixtures and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.%$TiB_2$ powders were produced by SHS reaction and ball-milled. The milled SHS powder was mixed with Cu powders by ball milling to produce Cu-2.5wt.%$TiB_2$ composites. $TiB_2$ particles less than 250nm were formed in the copper matrix after SHS-reaction. The releative density, electrical conductivity and hardness of specimens sintered at $650-750^{\circ}C$ were nearly 98%, 83%IACS and 71HRB, respectively. After heat treatment at 850 to $950^{\circ}C$ for 2 hours under Ar atmosphere, hardness was descedned by 15%. Our Cu-$TiB_2$ composite showed good thermal stability at eleveated temperature.

  • PDF

Effects of Elemental Powder Particle Size and Shape on the Synthesis of Ni Silicides by Mechanical Alloying (기계적 합금화에 의한 Ni Silicide 분말의 합성에 미치는 원소 분말의 입도 및 형상의 영향)

  • 변창선
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.215-223
    • /
    • 1999
  • The synthesis of $Ni_5Si_2,\;Ni_2Si$ and NiSi has been investigated by mechanical alloying (MA) of Ni-27.9at%Si, Ni-33.3at%Si and Ni-50.0at%Si powder mixtures. As-received and premilled elemental powders were subjected to MA. The as-received Ni powder was spherical and the mean particle size 48.8$\mu$m, whereas the premilled Ni powder was flaky and the mean particle diameter and thickness were found to be 125 and 5$\mu$m, respectively. The mean surface area of the premilled Mi powder particle was 3.5 times as large as that of the as-received Ni powder particle. The as-received Si powder was was 10.0$\mu$m. Self-propagating high-temperature synthesis (SHS) reaction, followed by a slow reaction (a solid state diffusion), was observed to produce each Ni silicide during MA of the as-received elemental powders. In other word , the reactants and product coexisted for a long period of MA of time. Only SHS reaction was, however, observed to produce each Ni silicide during MA of the premilled elemental powders, indicating that each Ni sillicide formed rather abruptly at a short period of MA time. The mechanisms and reaction rates for the formation of the Ni silicides appeared to be influenced by the elemental powder particle size and shape as well as the heat of formation of the products $(Ni_5Si_2$longrightarrow-43.1kJ/mol.at., $Ni_2Si$$\rightarrow$-47.6kJ/mol.at.).

  • PDF

Synthesis of Ni Silicides by Mechnical Alloying (기계적 합금화에 의한 Ni Silicide 분말의 합성)

  • 변창섭
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • Nickel silicides ($Ni_5$Si$_2$, Ni$_2$Si and NiSi) have been synthesized by mechanical alloying (MA) of Ni-27.9at.9at%Si, Ni-33.3at% and Ni-50.0at% powder mixtures, respectively. From in situ thermal analysis, eash citical milling period for the formation of the three phases was observed to be 40.2, 34.9 and 57.5 min, at which there was a rapid increase in temperature. This indicates that rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the three phases during room-temperature high-energy ball milling of elemental powders. Each Ni silicide, Ni and Si, however, coexisted for an extended milling time even after the critical milling period. The powders mechanically alloyed after the critical period showed the rapid increase in microhardness. The Hv values were found to be higher than 1000kgf/mm$^2$. The formation of nickel silicides by mechanical alloying and the relevant reaction rates appeared to be influenced by the critical milling period and the heat of formation of the products involved ($Ni_5$Si$_2$$\rightarrow$-43.1kJ/mol.at., Ni$_2$Si$\rightarrow$-47.6kJ/mol.at., NiSi$\rightarrow$-42.4kJ/mol.at).

  • PDF

Crack propagation behavior of in-situ structural gradient Ni/Ni-aluminide//Ti/Ti-aluminide laminate materials (Ni/Ni-aluminide//Ti/Ti-aluminide 구조경사형 층상재료의 균열 전파 거동)

  • Chung, D.S.;Kim, J.K.;Cho, H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.269-275
    • /
    • 2005
  • Ni/Ni-aluminide/Ti/Ti-aluminide laminate composite, considered as a functionally gradient material, was manufactured by thin foil hot press technique. Thick intermetallic layers of NiAl and $TiAl_3$ were formed by a self-propagating high-temperature synthesis (SHS) reaction, and thin continuous taters of $Ni_3Al$ and TiAl were formed by a solid-state diffusion. Fracture resistance with loading along the crack arrester direction is higher than crack divider direction due to the interruption of crack growth in metal layers. The $Ni_3Al$ and NiAl intermetallic layer showed cleavage and intergranular fracture behavior, respectively, while the fracture mode of $TiAl_3$ layer was found to be an intragranular cleavage. The debonding between metal and intermetallic layer and the pores were observed in the Ni/Ni-aluminide layers, resulting in the lower fracture resistance. With the results of acoustic emission (AE) source characterization the real time of failure and the effect of AE to crack growth could be monitored.

Fabrication of Porous MoSi2 material for Heating Element through Self-propagating High Temperature Synthesis Process (연소합성법에 의한 발열성 다공질 MoSi2계 재료의 제조)

  • Song, In-Hyuck;Yun, Jung-Yeul;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • In this study, SHS process has been employed to fabricate porous $MoSi_2$ material with electric-resistive heating capability through the control of pore size. The preform for SHS reaction was consisted of molybdenum powder with different sizes and silicon powder with different contained quantity. The size of the $MoSi_2$ particles thus formed was determined by the generated heat of combustion, not by the size of molybdenum powder. However, the pore size of $MoSi_2$ composite was proportional to the particle size of molybdenum powder. that is the coarser the molybdenum powder used, the larget the formed pore size. Based on these results, the porous $MoSi_2$ composite could be fabricated with a desired pore size. By orienting the porous molybdenum disilicide-based material in the form of pore size gradient, porous materials used for filters with improved dirt-holding capacity can be manufactured.

Effect of Diluent Size on Aluminum Nitride Prepared by Using Self-Propagating High-Temperature Synthesis Process (희석제 입도가 고온자전연소법에 의한 질화알루미늄 합성에 미치는 영향)

  • Lee, Jae-Ryeong;Lee, Ik-Kyu;Shin, Hee-Young;Chung, Hun-Saeng
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.69-75
    • /
    • 2005
  • To investigate the morphological effect on synthesis of aluminum nitride by SHS Process, two type of Al Powder (granular and flacky shape) with the mean size of 34 $\mu$m and the diluent AIN powders of four different mean sizes.0.12, 9.7, 39.3, 50.5 $\mu$m, were used to prepare green compact. The packing density was fixed to $35 TD\%. The initial pressure of $N_{2}$ and diluent fraction was varied in the range of $1\~10 MPa,\;0.4\~0.7$, respectively. AlN with high purity of $98\% or over and large particle size of about several tens fm can be synthesized by SHS reaction as a consequence of adjusting particle size of AlN dilutent similarly to that of Al reactant. This may be caused by improvement of $N_{2}$ gas permeation to compact after passing the propagation wave. In the case of flaky-shape aluminum used as reactant, instead of granular Al-powder, unstable combustion would be occurred. As the result, irregular propagation of combustion wave and falling-off of maximum temperature would be observed during the reaction.

Oxidation behavior of (Mo1-xWx)Si2 high-temperature heating elements (초고온용 발열체 (Mo1-xWx)Si2의 산화거동에 대한 연구)

  • Lee, Sung-Chul;Myung, Jae-ha;Kim, Yong-Nam;Jeon, Minseok;Lee, Dong-won;Oh, Jong-Min;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.200-207
    • /
    • 2020
  • MoSi2, (Mo1/2W1/2)Si2, and WSi2 powders were synthesized by self-propagating high-temperature synthesis (SHS) method. The synthesized powders were heat-treated at 500, 1,000, 1,200, 1,300, 1,400, 1,500 and 1,600℃ in ambient atmosphere. Oxidation of Mo-W silicide powder was found at low temperature of 500℃. XRD structure analysis and DTA/TG data showed that MoO3 was formed with 500℃ heat treatment for 1 hour, and that it was α-cristobalite phase that was formed with 1200℃ heat treatment, not α-quartz phase which is commonly found and stable at room temperature. Existence of W accelerated decomposition at both low and high temperature. Fully sintered MoSi2 and (Mo1/2W1/2)Si2 specimen did not show decomposition or weight loss by oxidation, with 1 hour heat treatment at either low or high temperature. Notably, it was difficult to sinter WSi2 because of oxidation reaction at low temperature.

Recovery of Mg-Ferrite Powder from Acid Leaching Mg Waste by Hydrothermal Method (산 침출 Mg폐액으로부터 수열법에 의한 Mg-Ferrite 분말회수)

  • 김영순;윤기석;안찬영;이종현;원창환
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.31-37
    • /
    • 1997
  • The Mg-ferrite powders were recovered from acid leaching Mg waste by hydrothermal method. Recovering conditions ofMg-Ferrite were investigated m this system and the powders prepared were characterized, using X-ray analysis, chemicalanalysis, SEM. TEM, and VSM. In this study, pH of solution and the kind of neutralizer wcre important factors on thecharacteristics of the product. The optimum condition of recovering MgPenite was the mole ratio of Fe" : Mg"=2'1, reactiontemperature : ZOWC, reaction time.lhr, at pH=lZ, and Oi partial pressure af 2000 psi. And the powders ~ccovered have amonodispersed and spherelike shapes with the narrow sue distribulion.ow sue distribulion.

  • PDF

Preparation of $Mg(OH)_2$and MgO from Acid Leaching $Mg^{++}$ Solution (산 침출$Mg^{++}$액으로부터 $Mg(OH)_2$및 MgO 粉末의 製造)

  • 최용각;이종현;원창환;이갑호
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.16-21
    • /
    • 2001
  • Ultrafine $Mg(OH)l_2$and MgO powders were recovered from the waste solution containing $Mg^{++}$ which was a by-product of SHS (Self-propagating High temperature Synthesis)process. The optimum experimental conditions to prepare $Mg(OH)_2$were 13.0 of pH and 0.7M of $Mg^{++}$ content with addition of 9M of KOH as a pH regulator in acid leaching solution. Complete pre-cipitation of Mg(OH)$_2$from $Mg^{++}$ was realized at that condition. The dehydration reaction of the prepared Mg(OH)$_2$was studied by DSC, and the result was used for calcination process. In order to obtain MgO powder, dried Mg(OH)2 powder was calcined at $400~450^{\circ}C$. Particle size and shape of the prepared $Mg(OH)_2$and MgO powder was similar to those of the commercial powders.

  • PDF