• 제목/요약/키워드: Self-organizing network

검색결과 323건 처리시간 0.023초

Study of the Wireless Ad-hoc Networks with Robust Route Maintenance Scheme

  • 홍근빈;윤지훈;김관웅
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권2호
    • /
    • pp.46-49
    • /
    • 2010
  • This paper has proposedfor wireless Ad-hoc networks with robust route maintenance schemes. The device feature Bluetooth and/or IEEE 802.11 network interfaces and communicate in a decentralized manner. The nodes have the responsibility of self-organizing so that the network is robust to the variations in network topology due to node mobility as well as the fluctuations of the signal quality in the wireless environment.

  • PDF

A Multi-Resolution Radial Basis Function Network for Self-Organization, Defuzzification, and Inference in Fuzzy Rule-Based Systems

  • Lee, Suk-Han
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 95 KFIS Workshop Realization of Human Friendly System Based on Soft Computiong Techniques
    • /
    • pp.124-140
    • /
    • 1995
  • The merit of fuzzy rule based systems stems from their capability of encoding qualitative knowledge of experts into quantitative rules. Recent advancement in automatic tuning or self-organization of fuzzy rules from experimental data further enhances their power, allowing the integration of the top-down encoding of knowledge with the bottom-up learning of rules. In this paper, methods of self-organizing fuzzy rules and of performing defuzzification and inference is presented based on a multi-resolution radial basis function network. The network learns an arbitrary input-output mapping from sample distribution as the union of hyper-ellipsoidal clusters of various locations, sizes and shapes. The hyper-ellipsoidal clusters, representing fuzzy rules, are self-organized based of global competition in such a way as to ensute uniform mapping errors. The cooperative interpolation among the multiple clusters associated with a mapping allows the network to perform a bidirectional many-to-many mapping, representing a particular from of defuzzification. Finally, an inference engine is constructed for the network to search for an optimal chain of rules or situation transitions under the constraint of transition feasibilities imposed by the learned mapping. Applications of the proposed network to skill acquisition are shown.

  • PDF

구조적응 자기조직화 신경망 : 한글 문자인식에의 적용 (Structure-Adaptive Self-Organizing Neural Network : Application to Hangul Character Recognition)

  • 이경미;조성배;이일병
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.137-142
    • /
    • 1995
  • 코호넨의 SOFM(Self-Organizing Feature Map)온 빠른 검증 학습이 가능하여 다층 퍼셉트론의 단점을 보완할 수 있는 패턴분류기로 부각되고 있다. 그러나 기본적으로 고정된 크기와 구조의 네트워크를 사용하기 때문에 실재 문제에 적용하기가 쉽지 않다는 문제가 있다. 본 논문에서는 패턴에 대한 사전 정보없이 복잡한 패턴공간을 적응적으로 분할하기 위해 구조적응되는 자기조직화 신경망을 소개하고 이를 인쇄체 한글 문자의 인식에 적용한 결과를 보여준다. 여기에서 제안하는 신경망은 SOFM의 각 셀이 좀더 자세한 SOFM으로 확장될 수 있도록하며, 확률분포가 0인 셀을 제거함으로써 패턴 공간에 보다 근사한 분류를 가능하게 한다. 실제로 이러한 방식이 한글과 같은 복잡한 분류 문제에서 어떻게 작동하는지 설명하고, 한글 완성형 2350자에 대해 실험한 결과를 보여준다.

  • PDF

경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계 (Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron)

  • 박호성;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF

셀 생산 방식에서 자기조직화 신경망을 이용한 기계-부품 그룹의 형성 (A self-organizing neural networks approach to machine-part grouping in cellular manufacturing systems)

  • 전용덕;강맹규
    • 산업경영시스템학회지
    • /
    • 제21권48호
    • /
    • pp.123-132
    • /
    • 1998
  • The group formation problem of the machine and part is a very important issue in the planning stage of cellular manufacturing systems. This paper investigates Self-Organizing Map(SOM) neural networks approach to machine-part grouping problem. We present a two-phase algorithm based on SOM for grouping parts and machines. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. Output layer in SOM network is one-dimensional structure and the number of output node has been increased sufficiently to spread out the input vectors in the order of similarity. The proposed algorithm performs remarkably well in comparison with many other algorithms for the well-known problems shown in previous papers.

  • PDF

일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구 (A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function)

  • 조성원;석진욱;홍성룡
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

Kohonen 자기조직화 map 에 기반한 기계-부품군 형성 (Machine-Part Cell Formation based on Kohonen화s Self Organizing Feature Map)

  • 이경미;이건명
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.315-318
    • /
    • 1996
  • The machine-part cell formation means the grouping of similar parts and similar machines into families in order to minimize bottleneck machines, bottleneck parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. The cell formation problem is knows as a kind of NP complete problems. This paper briefly introduces the cell-formation problem and proposes a cell formation method based on the Kohonen's self-organizing feature map which is a neural network model. It also shows some experiment results using the proposed method. The proposed method can be easily applied to the cell formation problem compared to other meta-heuristic based methods. In addition, it can be used to solve large-scale cell formation problems.

  • PDF

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

A Study of optimized clustering method based on SOM for CRM

  • Jong T. Rhee;Lee, Joon.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.464-469
    • /
    • 2001
  • CRM(Customer Relationship Management : CRM) is an advanced marketing supporting system which analyze customers\` transaction data and classify or target customer groups to effectively increase market share and profit. Many engines were developed to implements the function and those for classification and clustering are considered core ones. In this study, an improved clustering method based on SOM(Self-Organizing Maps : SOM) is proposed. The proposed clustering method finds the optimal number of clusters so that the effectiveness of clustering is increased. It considers all the data types existing in CRM data warehouses. In particular, and adaptive algorithm where the concepts of degeneration and fusion are applied to find optimal number of clusters. The feasibility and efficiency of the proposed method are demonstrated through simulation with simplified data of customers.

  • PDF