• 제목/요약/키워드: Self-ignition timing

검색결과 5건 처리시간 0.022초

분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

분사시기의 변화에 따른 제어자발화 가솔린기관의 배기특성 (An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine According to Variation of the Injection Timing)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.5-10
    • /
    • 2004
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine which has the ultra lean-burn with self-ignition of gasoline fuel can be achieved by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

직접분사식 디젤엔진에서의 공해저감을 위한 전자분사 시스템에 관한 실험적 연구 (An Experimental Study on Electronic Injection System for Pollutant Reduction in a DI Diesel Engine)

  • 채재우;정영식;양준석;황재원
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.9-14
    • /
    • 1997
  • The pump-pipe-injector system is that most commonly used type of injection equipment for diesel engines. In this study, a new electromagnetic fuel injection system was designed and carried out the experiment of single cylinder direct injection(DI) diesel engine. This system do not need the cam shaft for fuel injection. The effects of the injection timing on the combustion process and emission were investigated. The results are that 1) atomization was improved, 2) combustion pressure was increased and ignition delay became shorter than before, 3) Low smoke level guarantee with more advanced injection timing without abnormal combustion but NOX concentration was increased as the injection time advanced.

  • PDF

함정용 디젤 연료와 바이오디젤 연료를 적용한 단기통 디젤엔진에서 연료분사시기가 연소 및 질소산화물 배출특성에 미치는 영향 (Effect of fuel injection timing on the combustion and NOx emission characteristics in a single cylinder diesel engine applied with diesel fuel for naval vessel and biodiesel)

  • 이형민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.681-687
    • /
    • 2014
  • 본 논문에서는 해군함정의 추진용 디젤엔진의 연료로 사용되는 선박용 디젤연료와 바이오디젤을 단기통 엔진에 적용시켜 연료분사시기에 따른 실린더 내 연소특성, 엔진성능 및 질소산화물 배출 특성을 분석하고, 초고속 카메라를 이용하여 선박용 디젤연료와 바이오디젤연료의 연소과정을 분석하는데 초점을 두었다. 연료분사시기가 $BTDC25^{\circ}CA$에서 $BTDC5^{\circ}CA$까지 지각될수록 실린대 내 연소최고압력은 점점 떨어졌으나, 토크는 증가하는 경향을 보였다. 질소산화물은 $BTDC15^{\circ}CA$에서 가장 높게 측정되었으며, $BTDC15^{\circ}CA$를 기준으로 지각 및 진각조건에서는 저감되는 것으로 분석되었다. 연료분사시기가 $BTDC5^{\circ}CA$일 때 선박용 디젤연료와 바이오디젤연료의 연소과정을 비교한 결과 산소가 포함된 바이오디젤연료의 착화시기가 선박용 디젤연료보다 빠르나, 화염이 확산되어 발달할수록 화염강도는 선박용 디젤연료가 큰 것으로 분석되었다.