• Title/Summary/Keyword: Self-gravity

Search Result 106, Processing Time 0.026 seconds

Finite Element Modeling of 2-stage Axially Deploying Beams Vibrating Under Gravity (중력에 의해 진동하는 2단 축방향 전개 보의 유한요소 모델링)

  • Yun, Won-Sang;Bae, Gyu-Hyun;Beom, Hee-Rak;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.202-207
    • /
    • 2012
  • Multi-stage deploying beams are useful for transporting parts or products handling in production lines. However, such multi-stage beams are often exposed to unwanted vibration due to the presence of their flexibility and time-varying properties. This paper is concerned with dynamic modeling and analysis of 2-stage axially deploying beams under gravity by using the finite element method. A variable domain finite element method is employed to develop the dynamic model. A rigorous method to account for engagement of two-stage beams during the deploying procedure is introduced by breaking the entire domain into three variable domains. Several deploying strategies are tested to analyze the residual vibrations. Several examples are illustrated to investigate the self-induced damping and the effects of deploying strategy on the vibrations.

Analysis of Consolidation Behavior for Dredged Clay with Horizontal Drains (수평배수재가 설치된 준설매립 점토의 압밀 거동 해석)

  • 김수삼;장연수;박정순;오세웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.641-648
    • /
    • 2000
  • The horizontal drain method by installing drains horizontally in the ground is often used to expedite the dispersion of pore water and to increase the strength of dredged soft clay under the action of gravity or vacuum. In this study a numerical analysis method is developed to predict the consolidation process of soft ground with horizontal drains. One-dimensional self-weight consolidation theory is extended tn three-dimensions] theory with appropriate boundary conditions of horizontal drains. In the condition of pore water drainage by gravity, the behavior of the dredged clay with horizontal drains is compared with that of the clay without drains. The influence of design factors of drains on consolidation process is also analyzed.

  • PDF

Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.911-930
    • /
    • 2016
  • The main purpose of this paper is to study the effects of initial stress, gravity, anisotropy and porosity on the propagation of shear wave (SH-waves) in a fiber-reinforced layer placed over a porous media. The frequency equations in a closed form have been derived for SH-waves by applying suitable boundary conditions. The frequency equations have been expanded and approximated up to $2^{nd}$ order of Whittaker's function. It has been observed that the SH-wave velocity decreases as width of fiber-reinforced layer increases. However, with the increase of initial stress, gravity parameter and porosity, the phase velocity increases. The results obtained are in perfect agreement with the standard results investigated by other relevant researchers.

Correlation between the Displacement of Center of Gravity and Lyapunov Exponent during Treadmill Walking (트레드밀 보행에서 무게중심 이동과 리아프노프 지수 사이의 상관관계)

  • Kim, Soo-Han;Park, Jung-Hong;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The purpose of study is to investigate the correlation between the Lyapunov exponent (LE) and the displacement of the center of gravity (DCG) for clarifying walking stability on the treadmill. From fifteen young healthy subjects volunteered, lower extremity joint angles were recorded using a three-dimensional motion capture system with reflective markers. The anteroposterior DCG and the LE were calculated by a commercial software. A linear correlation between LE and DCG (p<0.05) showed that LEs compensated for walking distance on the treadmill walking. However, LEs were found to be independent of self-selected walking speeds by a negligible correlation between LE and the Froude number (p>0.05).

Steering System in a Self-Balancing Electric Scooter (역진자형 전동 스쿠터의 조향 시스템)

  • Choi, Yong Joon;Ryoo, Jung Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.942-949
    • /
    • 2014
  • In this paper, a new steering system for a self-balancing electric scooter is proposed with an intuitive steering command input method, where the steering command is generated from the rider's motion of shifting body to move the center of gravity toward the rotational direction. For the purpose, weight distributions on the rider's feet are measured using force sensors placed beneath the rider's feet, and the difference is applied to a steering control system. Stability of the steering system and resultant radius of gyration is investigated by modeling the steering system in consideration of the rider's motion and centrifugal force. The proposed steering system is applied to experiments, and the results are presented to prove the validity of the proposed method.

Wilson-Bappu Effect: Extended to Surface Gravity

  • Park, Sunkyung;Kang, Wonseok;Lee, Jeong-Eun;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2013
  • Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (MV) and the width of the Ca II K emission line for late-type stars in 1957. Here, we revisit the Wilson-Bappu relationship (hereafter, WBR) to claim that WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high resolution spectra of 125 late-type stars, which were obtained with Bohyunsan Optical Echelle Spectrograph (BOES) and adopted from the UVES archive. Based on our measurement of the emission line width (W), we have obtained a WBR of $M_V=33.76-18.00{\log}W$. In order to extend the WBR to be a surface gravity indicator, the stellar atmospheric parameters such as effective temperature ($T_{eff}$), surface gravity (logg), metallicity ([Fe/H]), and micro-turbulence (${\xi}_{tur}$) have been derived from the self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and logW, we found that ${\log}g=-5.85\;{\log}W+9.97\;{\log}T_{eff}-23.48$ for late-type stars.

  • PDF

Study on the Estimation of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition (자항상태 VPMM 시험을 통한 무인잠수정 조종성능 추정에 관한 연구)

  • Park, Jongyeol;Rhee, Shin Hyung;Lee, Sungsu;Yoon, Hyeon Kyu;Seo, Jeonghwa;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The present study aims to improve the accuracy of the maneuvering simulations based on captive model test results. To derive the hydrodynamic coefficients in a self-propelled condition, a mathematical maneuvering model using a whole vehicle model was established. Captive model tests were carried out using the Vertical Planar Motion Mechanism (VPMM) equipment. A motor controller was used to control the constant propeller revolution rate during pure motion tests. The resistance tests, self-propulsion tests, static drift tests, and VPMM tests were performed in the towing tank of Seoul National University. When the vertical drift angle changes, the gravity load on the sensors were changed. The hydrodynamic forces were deduced by subtracting the gravity load from the measured forces. The hydrodynamic coefficients were calculated using the least-square method. The simulation of the turning circle test was compared with the free-running model test result, and the error of the turning radius was 8.3 % compared to the free-running model test.