• Title/Summary/Keyword: Self-gravity

Search Result 106, Processing Time 0.022 seconds

Load Frequency Control of Power System using a Self-tuning Fuzzy PID Controller (자기조정 퍼지 PID제어기를 이용한 전력시스템의 부하주파수 제어)

  • 이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 1999
  • A self-tuning FPID(Fuzzy Proportional Intergral Derivative) controller fo load frequency control of 2-area power systemis proposed in this paper. The paramters of the proposed self-tuning FPID controller are self-tuned by the proposed fuzzy inference technique. Therefore in this paper the fuzzy inference technique of PID gains using PSGM(Product Sum Gravity Method) is presented and is applied to the load frequency control of 2-area power system. The computer simulation results show that the proposed controller give better more control characteristics than convention-al PID, FLC under load changes.

  • PDF

Effect of Self-gravity Acupressure on Varus Knee Correction: Retrospective Observational Study (자가 중력 지압에 의한 내반슬 교정 효과: 후향적 관찰 연구)

  • Sung Kwon Park;Seong Chan Kim;Geum Na Hong;Min Joo Choi
    • Journal of Naturopathy
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • Background: Despite the positive effects of the self-gravity acupressure program on genu varum correction, no systematic observation has yet to be made. Purpose: In this study, the effect of the self-gravity acupressure program on varus knee correction was confirmed retrospectively by comparing the medial angle of the knee before and after the self-gravity acupressure program. Methods: Fifty people with varus knees were subjected to a 75-minute acupressure program while lying on an acupressure tool, and then the medial knee angles were compared before and after the program. Results: The average angle of the inside of the knee of the study subjects increased by 7.29±3.85° (p<.000) on the left side and 7.08±3.86° (p<.000) on the right side after the acupressure program was implemented, indicating that the study subject's varus knee significantly improved even after applying for a short period time. It was confirmed. Conclusion: This study confirmed that the self-gravity acupressure is a valuable program for correcting the genus varus. However, to use the results of this study clinically in the future, further studies are required to optimize the mechanism and clinical effects of the self-gravity acupressure program on the improvement of the genu varus knee.

Development of Uranium-foil Fabrication Technology for Mo-99 Irradiation Target by Self Gravity Flowing for PFC Method (용탕자중공급 PFC법을 이용한 의료용 동위원소 Mo-99 조사타겟용 우라늄박판 제조공정개발)

  • Sim, Moon-Soo;Kim, Chang-Kyu;Kim, Ki-Hwan;Kim, Woo-Jung;Lee, Jong-Hyeon
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.288-292
    • /
    • 2011
  • In order to complement the drawbacks of quartz crucible such as fragile-like break and melt-leakage through open slit nozzle, a new PFC system has been developed using a common graphite crucible and plugging system. The u melt is fed on to the rotating a roll through slit nozzle by self-gravity. The new equipment was designed and manufactured successfully. An effort for optimizing all related parameter has been made. Then using the optimized parameters about 10 meters u foil having very thin thickness, which meets the target thickness of 130 ${\mu}m$ and enough width more than 60 mm could be made. The thickness homogeneity set improved, due to the lower eddy flowing of the melt flow the self-gravity feeding system.

Modeling of Self Camera Stick and Optimum Design (셀카봉 모델링과 최적설계)

  • YOON, JONGCHAN;JUNG, HEEOUK
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.460-466
    • /
    • 2015
  • The remaining features in this study using the Freecad proceeds according to the overall effect was not supported by the modeling Freecad were conducted a study to complement using the CATIA program or other commercially available. The focus of this study is that there can be obtained the stability through the center of gravity of the balancing of two parts by increasing the weight of the other magnet through a Fortuna other end of the weight of the bar, using the center of gravity. Finally, to find the optimal design of the weight and thickness of the main bar through the center of gravity balancing is the purpose of this study.

  • PDF

Natural User Interface with Self-righting Feature using Gravity (중력에 기반한 자연스러운 사용자 인터페이스)

  • Kim, Seung-Chan;Lim, Jong-Gwan;Bianchi, Andrea;Koo, Seong-Yong;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.384-389
    • /
    • 2009
  • In general, gestures can be utilized in human-computer interaction area. Even though the acceleration information is most widely used for the detection of user’s intention, it is hard to use the information under the condition of zero or small variations of gesture velocity due to the inherent characteristics of the accelerometer. In this paper, a natural interaction method which does not require excessive gesture acceleration will be described. Taking advantages of the gravity, the system can generate various types of signals. Also, many problems such as initialization and draft error can be solved using restorative uprighting force of the system.

  • PDF

Three-Dimensional Simulations of the Jeans-Parker Instability

  • LEE SANG MIN;HONG SEUNG SOO;KIM AND JONGSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.285-287
    • /
    • 2001
  • We have studied the nonlinear evolution of a magnetized disk of isothermal gas, which is sustained by its self-gravity. Our objective is to investigate how the Jeans, Parker, and convective instabilities compete with each other in structuring/de-structuring large scale condensations in such disk. The Poisson equation for the self-gravity has been solved with a fourth-order accurate Fourier method along with the Green function, and the MHD part has been handled by an isothermal TVD code. When large wavelength perturbations are applied, the combined action of the Jeans and Parker instabilities suppresses the development of the convection and forms a dense core of prolate shape in the mid-plane. Peripheral structures around it are filamentary. The low density filaments connect the dense core to the diffuse upper region. On the other hand, when small wavelength perturbations are applied, the disk develops into an equilibrium state which is reminiscent of the Mouschovias's 2-D non-linear equilibrium of the classical Parker instability under an externally given gravity.

  • PDF

PARKER-JEANS INSTABILITY IN THE GALACTIC GASEOUS DISK. I. LINEAR STABILITY ANALYSIS AND TWO-DIMENSIONAL MHD SIMULATIONS

  • LEE S. M.;KIM JONGSOO;FRANCO J.;HONG S. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.249-255
    • /
    • 2004
  • Here we present a linear stability analysis and an MHD 2D model for the Parker-Jeans instability in the Galactic gaseous disk. The magnetic field is assumed parallel to a Galactic spiral arm, and the gaseous disk is modelled as a multi-component, magnetized, and isothermal gas layer. The model employs the observed vertical stratifications for the gas density and the gravitational acceleration in the Solar neighborhood, and the self-gravity of the gas is also included. By solving Poisson's equation for the gas density stratification, we determine the vertical acceleration due to self-gravity as a function of z. Subtracting it from the observed gravitational acceleration, we separate the total acceleration into self and external gravities. The linear stability analysis provides the corresponding dispersion relations. The time and length scales of the fastest growing mode of the Parker-Jeans instability are about 40 Myr and 3.3 kpc, respectively. In order to confirm the linear stability analysis, we have performed two-dimensional MHD simulations. These show that the Parker-Jeans instability under the self and external gravities evolves into a quasi-equilibrium state, creating condensations on the northern and southern sides of the plane, in an alternate manner.

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

Core Formation in a Turbulent Molecular Cloud

  • Kim, Jong-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.106.2-106.2
    • /
    • 2011
  • The two competing theories of star formation are based on turbulence and ambipoar diffusion. I will first briefly explain the two theories. There have been analytical (or semi-analytic) models, which estimate star formation rates in a turbulent cloud. Most of them are based on the log-normal density PDF (probability density function) of the turbulent cloud without self-gravity. I will first show that the core (star) formation rate can be increased significantly once self-gravity of a turbulence cloud is taken into account. I will then present the evolution of molecular line profiles of HCO+ and C18O toward a dense core that is forming inside a magnetized turbulent molecular cloud. Features of the profiles can be affected more significantly by coupled velocity and abundance structures in the outer region than those in the inner dense part of the core. During the evolution of the core, the asymmetry of line profiles easily changes from blue to red, and vice versa. Finally, I will introduce a method for incorporating ambipolar diffusion in the strong coupling approximation into a multidimensional magnetohydrodynamic code.

  • PDF

A Development of LNG Pump Tower Analysis System (천연 액화 가스 운반선의 펌프타워 해석 시스템 개발)

  • Lee, Kwang-Min;Han, Sung-Kon;Heo, Joo-Ho;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.7-13
    • /
    • 2007
  • The purpose of this study is to develop a structural analysis system of LNG pump tower structure. The system affords to build optimized finite element model and analysis procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three types of loading components, which are thermal, inertia and self-gravity are considered in the system. All these design and analysis procedures are embedded in to the analysis system successfully.

  • PDF