• 제목/요약/키워드: Self-gravity

검색결과 106건 처리시간 0.029초

자기조정 퍼지 PID제어기를 이용한 전력시스템의 부하주파수 제어 (Load Frequency Control of Power System using a Self-tuning Fuzzy PID Controller)

  • 이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 1999
  • A self-tuning FPID(Fuzzy Proportional Intergral Derivative) controller fo load frequency control of 2-area power systemis proposed in this paper. The paramters of the proposed self-tuning FPID controller are self-tuned by the proposed fuzzy inference technique. Therefore in this paper the fuzzy inference technique of PID gains using PSGM(Product Sum Gravity Method) is presented and is applied to the load frequency control of 2-area power system. The computer simulation results show that the proposed controller give better more control characteristics than convention-al PID, FLC under load changes.

  • PDF

자가 중력 지압에 의한 내반슬 교정 효과: 후향적 관찰 연구 (Effect of Self-gravity Acupressure on Varus Knee Correction: Retrospective Observational Study)

  • 박성권;김성찬;홍금나;최민주
    • 한국자연치유학회지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2023
  • 배경: 자가 중력 지압 프로그램 참여 후 내반슬이 개선되는 사례가 개별적으로 확인되고 있으나 체계적인 관찰이 진행되지 못한 상태이다. 목적: 자가 중력 지압 프로그램을 실시 후 무릎 내측 각도의 변화를 후향적으로 관찰하여 자가 중력 지압 프로그램이 내반슬 교정에 미치는 효과를 평가하기 위함이다. 방법: 내반슬이 관찰되는 50명을 대상으로, 지압 도구 위에 누워서 75분간 지압 프로그램을 수행한 후 프로그램 실시 전후 무릎 내측 각도의 변화를 비교했다. 결과: 연구대상자들의 무릎 내측의 평균 각도는 지압프로그램 실시 후 좌측 7.29±3.85° (p < .000), 우측 7.08±3.86° (p < .000) 증가하여 연구 대상자의 내반슬이 유의하게 개선되는 것이 확인됐다. 결론: 본 연구의 결과는 자가 중력 지압 프로그램이 내반슬 교정에 활용될 수 있다는 가능성을 제시한다. 본 연구의 결과를 임상적으로 활용하기 위해, 자가 중력 지압 프로그램이 내반슬을 개선하는 효과에 대한 기전 및 임상적 효과를 최적화하는 추후 연구가 요구된다.

용탕자중공급 PFC법을 이용한 의료용 동위원소 Mo-99 조사타겟용 우라늄박판 제조공정개발 (Development of Uranium-foil Fabrication Technology for Mo-99 Irradiation Target by Self Gravity Flowing for PFC Method)

  • 심문수;김창규;김기환;김우정;이종현
    • 한국주조공학회지
    • /
    • 제31권5호
    • /
    • pp.288-292
    • /
    • 2011
  • In order to complement the drawbacks of quartz crucible such as fragile-like break and melt-leakage through open slit nozzle, a new PFC system has been developed using a common graphite crucible and plugging system. The u melt is fed on to the rotating a roll through slit nozzle by self-gravity. The new equipment was designed and manufactured successfully. An effort for optimizing all related parameter has been made. Then using the optimized parameters about 10 meters u foil having very thin thickness, which meets the target thickness of 130 ${\mu}m$ and enough width more than 60 mm could be made. The thickness homogeneity set improved, due to the lower eddy flowing of the melt flow the self-gravity feeding system.

셀카봉 모델링과 최적설계 (Modeling of Self Camera Stick and Optimum Design)

  • 윤종찬;정희욱
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.460-466
    • /
    • 2015
  • The remaining features in this study using the Freecad proceeds according to the overall effect was not supported by the modeling Freecad were conducted a study to complement using the CATIA program or other commercially available. The focus of this study is that there can be obtained the stability through the center of gravity of the balancing of two parts by increasing the weight of the other magnet through a Fortuna other end of the weight of the bar, using the center of gravity. Finally, to find the optimal design of the weight and thickness of the main bar through the center of gravity balancing is the purpose of this study.

  • PDF

중력에 기반한 자연스러운 사용자 인터페이스 (Natural User Interface with Self-righting Feature using Gravity)

  • 김승찬;임종관;안드레아 뱐키;구성용;권동수
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.384-389
    • /
    • 2009
  • 일반적으로 사용자의 동작 정보는 human-computer interaction 에 유용하게 사용되는데, 이때 사용자의 의도 파악은 주로 움직임의 가속도 정보를 통해 분석된다. 그러나 일반적인 사람의 움직임은 등속 운동 및 미미한 가속도를 수반하는 경우가 많아 기존의 접근 방식으로는 사용자의 모든 움직임을 검출하기 어려운 단점이 있으며, 경우에 따라서는 부자연스러운 움직임을 유발시키기도 한다. 본 논문에서는 이러한 문제를 해결하기 위해 자연스러운 interaction 을 위한 새로운 인터페이스 방식을 제안하고 이의 활용방안에 대해 논의한다. 제안된 시스템은 중력을 기구부의 복원력으로 활용하여, 초기화와 같은 가속도계 기반의 IMU 의 공통적인 문제를 해결하고 또한 비교적 간단한 움직임으로도 다양한 신호 패턴을 생성시킬 수 있도록 하는 것에 그 목적을 둔다.

  • PDF

Three-Dimensional Simulations of the Jeans-Parker Instability

  • LEE SANG MIN;HONG SEUNG SOO;KIM AND JONGSOO
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.285-287
    • /
    • 2001
  • We have studied the nonlinear evolution of a magnetized disk of isothermal gas, which is sustained by its self-gravity. Our objective is to investigate how the Jeans, Parker, and convective instabilities compete with each other in structuring/de-structuring large scale condensations in such disk. The Poisson equation for the self-gravity has been solved with a fourth-order accurate Fourier method along with the Green function, and the MHD part has been handled by an isothermal TVD code. When large wavelength perturbations are applied, the combined action of the Jeans and Parker instabilities suppresses the development of the convection and forms a dense core of prolate shape in the mid-plane. Peripheral structures around it are filamentary. The low density filaments connect the dense core to the diffuse upper region. On the other hand, when small wavelength perturbations are applied, the disk develops into an equilibrium state which is reminiscent of the Mouschovias's 2-D non-linear equilibrium of the classical Parker instability under an externally given gravity.

  • PDF

PARKER-JEANS INSTABILITY IN THE GALACTIC GASEOUS DISK. I. LINEAR STABILITY ANALYSIS AND TWO-DIMENSIONAL MHD SIMULATIONS

  • LEE S. M.;KIM JONGSOO;FRANCO J.;HONG S. S.
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.249-255
    • /
    • 2004
  • Here we present a linear stability analysis and an MHD 2D model for the Parker-Jeans instability in the Galactic gaseous disk. The magnetic field is assumed parallel to a Galactic spiral arm, and the gaseous disk is modelled as a multi-component, magnetized, and isothermal gas layer. The model employs the observed vertical stratifications for the gas density and the gravitational acceleration in the Solar neighborhood, and the self-gravity of the gas is also included. By solving Poisson's equation for the gas density stratification, we determine the vertical acceleration due to self-gravity as a function of z. Subtracting it from the observed gravitational acceleration, we separate the total acceleration into self and external gravities. The linear stability analysis provides the corresponding dispersion relations. The time and length scales of the fastest growing mode of the Parker-Jeans instability are about 40 Myr and 3.3 kpc, respectively. In order to confirm the linear stability analysis, we have performed two-dimensional MHD simulations. These show that the Parker-Jeans instability under the self and external gravities evolves into a quasi-equilibrium state, creating condensations on the northern and southern sides of the plane, in an alternate manner.

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

Core Formation in a Turbulent Molecular Cloud

  • 김종수
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.106.2-106.2
    • /
    • 2011
  • The two competing theories of star formation are based on turbulence and ambipoar diffusion. I will first briefly explain the two theories. There have been analytical (or semi-analytic) models, which estimate star formation rates in a turbulent cloud. Most of them are based on the log-normal density PDF (probability density function) of the turbulent cloud without self-gravity. I will first show that the core (star) formation rate can be increased significantly once self-gravity of a turbulence cloud is taken into account. I will then present the evolution of molecular line profiles of HCO+ and C18O toward a dense core that is forming inside a magnetized turbulent molecular cloud. Features of the profiles can be affected more significantly by coupled velocity and abundance structures in the outer region than those in the inner dense part of the core. During the evolution of the core, the asymmetry of line profiles easily changes from blue to red, and vice versa. Finally, I will introduce a method for incorporating ambipolar diffusion in the strong coupling approximation into a multidimensional magnetohydrodynamic code.

  • PDF

천연 액화 가스 운반선의 펌프타워 해석 시스템 개발 (A Development of LNG Pump Tower Analysis System)

  • 이광민;한성곤;허주호;박재형
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.7-13
    • /
    • 2007
  • The purpose of this study is to develop a structural analysis system of LNG pump tower structure. The system affords to build optimized finite element model and analysis procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three types of loading components, which are thermal, inertia and self-gravity are considered in the system. All these design and analysis procedures are embedded in to the analysis system successfully.

  • PDF