• Title/Summary/Keyword: Self-excited

Search Result 254, Processing Time 0.024 seconds

A Study on Self-Excited characteristic for stable operation of Three-Phase Induction Generator (3상유도발전기의 안정된 동작을 위한 자기여자현상에 대한 연구)

  • Cho, Y.R.;Maeng, I.J.;Baek, S.H.;Lee, K.Y.;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.26-28
    • /
    • 2005
  • Induction generator is the most common generator in wind energy systems because of its simplicity, ruggedness, little maintenance, price and etc. But the main drawbacks in induction generator is its need of reactive power means to build up the terminal voltage. This drawback is not an obstacle today where PWM inverters can accurately supplies the induction generator with its need from reactive power. For a insurance of three-phase induction generator requires capacitive reactance of the terminal. Most of previous work uses numerical iterative method to determine this minimum capacitor. But the numerical iteration takes long time and divergence may be occurs. In this paper is presented the design methods of the minimum self-excited capacitor required for induction generator operation. And a new formula from the equivalent circuit for stable generation operation of self-excited induction generator calculates the proper capacity to obtain the terminal voltage of the load stage. The validity of proposed design methods is confirmed by experimental and computed results.

  • PDF

Symptoms on Generation of Combustion Oscillation and their Detection (진동연소 발생에 관한 징후와 이의 검출)

  • 양영준
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.205-213
    • /
    • 2004
  • Usefulness of an optical fiber was demonstrated by detecting the generation of self-excited combustion oscillations. OH chemiluminescence intensity detected by the optical fiber showed mostly excellent agreement with those obtained by high speed CCD camera measurements when combustion oscillations were strong. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure. For the purpose, we have found and proposed unique measures to tell the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or omission of OH radicals.

Behaviour Analysis of Self Excited Induction Generator Feeding Linear and No Linear Loads

  • Moulahoum, Samir;Kabache, Nadir
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1371-1379
    • /
    • 2013
  • Application of induction machines in wind turbine driven generators is a good alternative due to their good characteristics such as efficiency, reliability and low cost. Nevertheless, when isolated operation is required, the application of external capacitive bank, connected to the stator windings, to provide self-excitation results in a rather complex analysis. This paper presents an analysis of self-excited induction generator connected to a load either directly or by an intermediate of a power converter. At first a dynamic model of the induction generator accounting for magnetic saturation is developed. Then a number of balanced and unbalanced capacitors, passive and active loads are verified. Experimental results obtained from laboratory tests are compared to those simulated; the two are shown to be in good agreement.

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Motion Control of Pneumatic Servo Cylinder Using Neural Network (신경회로망을 이용한 공압 서보실린더의 운동제어)

  • Cho, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.140-147
    • /
    • 2008
  • This paper describes a Neural Network based PD control scheme for motion control of pneumatic servo cylinder. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional linear controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. Based on the parameters thus identified, a PD feedback compensator is designed first and then a neural network is incorporated. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PD control.

Motion Control of Servo Cylinder Using Neural Network (신경회로망을 이용한 서보 실린더의 운동제어)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.955-960
    • /
    • 2004
  • In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The Neural Network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control.

A Study on 2 Phase Excitation Method of SRM Drive (SRM 드라이브의 2상여자방식에 관한 연구)

  • Moon, Jae-Won;An, Young-Ju;Ahn, Jin-Woo;Hwan, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.177-180
    • /
    • 1997
  • A new excitation method of switched reluctance moor drive is described in this paper. This motor produces reluctance torque by mutual action between tyro phases as well as conventional self reluctance torque. The change of self inductance and mutual inductance are used to produce torque. This paper suggests the operational principle, the mechanism of torque product and the driving characteristics of Switched Reluctance Motor with 2 phase excitation against conventional SRM experimentally. The energy conversion ratio is increased because the next phase is excited after one phase is already excited. Acoustic noise of SRM with 2 phase excitation is decreased than that of conventional SRM due to the mechanism of torque production.

  • PDF

Steady State Analysis of Series-Connected Self-Excited Wound Type Induction Generators (직렬접속 자기여자 권선형 유도전기의 정상상태해석)

  • Hong, Mun-Seok;Jwa, Chong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.867-869
    • /
    • 2000
  • This paper describes the steady state performance of a self-excited wound type induction generator with stator and rotor windings connected in series along with excitation capacitors. For this purpose a mathematical model is developed by means of the well known generalized machine theory utilizing d-q axis orthogonal transformation. This model can be used to analyze short shunt and long shunt generators as well as shunt generator and the algorithm for this analysis is persented. The characteristics of generators are compared one another by using parameters which are validated by Mostafa et al.

  • PDF