• Title/Summary/Keyword: Self-elasticity

Search Result 94, Processing Time 0.034 seconds

Effects of the Academic Efficacy, Self-directedness and Ego-resilience on Psychological States in Nursing University Students (간호대학생의 심리상태에 학업효능감, 자기주도성, 자아탄력성이 미치는 영향)

  • Kim, Eun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.73-79
    • /
    • 2020
  • This study examined the factors influencing the relationship between anger and happiness of university nursing students so that they can improve their happiness and perform their studies with better internalized values. The general characteristics, academic efficacy, self-directedness, self-resilience, anger scale, and subjective happiness of 401 nursing students were measured. The differences between these groups were analyzed using t-tests and ANOVA tests. Correlations among academic efficacy, self-directedness, self-resilience and psychological states were calculated using Pearson's correlation coefficient. Multiple group analysis was conducted for assessing the interaction effects of academic efficacy, self-resilience and self-directedness. Subjective happiness and predictors of the study (self-directedness and ego-resilience) were positively correlated with statistical significance. The lower the self-directedness was, the higher the subjective happiness that is reduced by anger was. The higher the self-elasticity, the lower the degree of the subjective happiness that is reduced by anger. Since the moderating effect of self-directedness has been demonstrated in the relationship between anger and happiness, it is necessary to consider instituting proper pedagogy so that the educational method of enhancing self-directedness can be reflected in the field of nursing.

Analytical Study on Distribution of Stresses Induced in Soil Beam (지반보의 응력분포에 관한 해석적 연구)

  • Lee, Seung-Hyun;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5009-5014
    • /
    • 2015
  • Hydraulic uplift which is caused by the action of pore water pressure can be occurred in clay underlain by granular soil during conducting narrow excavation. Estimation of hydraulic uplift is done by considering soil beam. In order to execute more precise estimation of hydraulic uplift, determination of stress distribution in soil beam is necessary. This study presents stress distribution and displacement distribution in the soil beam based on the theory of elasticity. Stress distribution developed in the soil beam by self weight was derived using stress function depicted by $5^{th}$ order of polynomial and it was seen that vertical stresses along the depth of the soil beam show parabolic distribution and those directions be downward. Regarding soil beam which has the weight of $16kN/m^3, thickness and depth are 1m respectively, maximum vertical stress was about 1.7kPa. Stress distribution by the aciton of pore water pressure was derived via superposition of the stresses corresponding to the self weight and it can be seen that vertical compressive stresses act along the depth of the soil beam when the magnitude of pore water pressure equal to 5 times of the self weight is considered. Equations for prediction of the displacements in the soil beam are also presented.

A Study on Applicability of Embedded Smart Sensor for Concrete Curing Monitoring (콘크리트 양생 강도 모니터링을 위한 매립형 지능형 센서의 적용성 연구)

  • Park, Seung-Hee;Kim, Dong-Jin;Hong, Seok-Inn;Lee, Chang-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.219-224
    • /
    • 2011
  • In this study, a piezoelectric smart sensor that can be embedded inside of concrete structures is developed to investigate the early stage of concrete curing. A waterproof coating is used to protect the piezoelectric sensor from moistures of concrete mixture. Also, a mortar case is utilized to encapsulate the sensor to protect it from impact loads. To estimate the strength of concrete, a self-sense guided-wave actuated sensing technique is applied. In the guided wave, its velocity is varied according to the mechanical properties of concrete such as modulus of elasticity. Because modulus of elasticity directly affects the strength of concrete, the guidedwave's velocity also affects the concrete strength development. To verify the feasibility of using the proposed approach, the smart sensor was embedded into a 100MPa concrete cylinder and the self-sense guided wave is continuously measured throughout the curing process. The measurements showed that the propagation time (TOF) of the measured guided waves gradually decreased as the curing age increased. Especially, at the early age of the curing process, the variation of the TOF was very significant. Furthermore, the results showed that there is a linear relationship between the TOF of the self-sense guided waves and the strength of concrete existed. It is safe to conclude that the proposed approach can be used very effectively in monitoring of the strength development of high strength concrete structures.

Time-dependent analysis of slender, tapered reinforced concrete columns

  • de Macedo Wahrhaftig, Alexandre
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.229-247
    • /
    • 2020
  • This study analyzed stresses in concrete and its reinforcement, computing the additional loading transferred by concrete creep. The loading varied from zero, structure exclusively under its self-weight, up to the critical buckling load. The studied structure was a real, tapered, reinforced concrete pole. As concrete is a composite material, homogenizing techniques were used in the calculations. Due to the static indetermination for determining the normal forces acting on concrete and reinforcement, equations that considered the balance of forces and compatibility of displacement on cross-sections were employed. In the mathematical solution used to define the critical buckling load, all the elements of the structural dynamics present in the system were considered, including the column self-weight. The structural imperfections were linearized using the geometric stiffness, the proprieties of the concrete were considered according to the guidelines of the American Concrete Institute (ACI 209R), and the ground was modeled as a set of distributed springs along the foundation length. Critical buckling loads were computed at different time intervals after the structure was loaded. Finite element method results were also obtained for comparison. For an interval of 5000 days, the modulus of elasticity and critical buckling load reduced by 36% and 27%, respectively, compared to an interval of zero days. During this time interval, stress on the reinforcement steel reached within 5% of the steel yield strength. The computed strains in that interval stayed below the normative limit.

Test on the Mechanical Characteristics of Glass Fiber Membrane (유리섬유 막재의 역학적 특성에 관한 시험)

  • Park, Kang-Geun;Yoon, Sung-Kee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • Membrane structures are now used in various ways throughout the world with the merits of free shape, lightness, durability, sunlight transmittance and homogeneous material. The development of new membrane material opened up new possibility for the design of new building structures. Recently it was mainly used PVC, PVF, PVDF, PTFE, ETFE membrane for using the roofing material of membrane structures. Some problems of membrane materials have fire proofing, lack of strength, self cleaning capacity, tear resistance, durability, heat insulation, sound insulation and elasticity. For the solution of this problems, it will be tested the mechanical properties of membrane material about tensile strength, tearing resistance, etc.

  • PDF

Effect of fiber type and content on properties of high-strength fiber reinforced self-consolidating concrete

  • Tuan, Bui Le Anh;Tesfamariam, Mewael Gebregirogis;Hwang, Chao-Lung;Chen, Chun-Tsun;Chen, Yuan-Yuan;Lin, Kae-Long
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.299-313
    • /
    • 2014
  • Effects of polypropylene (PP) fibers, steel fibers (SF) and hybrid on the properties of highstrength fiber reinforced self-consolidating concrete (HSFR-SCC) under different volume contents are investigated in this study. Comprehensive laboratory tests were conducted in order to evaluate both fresh and hardened properties of HSFR-SCC. Test results indicated that the fiber types and fiber contents greatly influenced concrete workability but it is possible to achieve self consolidating properties while adding the fiber types in concrete mixtures. Compressive strength, dynamic modulus of elasticity, and rigidity of concrete were affected by the addition as well as volume fraction of PP fibers. However, the properties of concrete were improved by the incorporation of SF. Splitting tensile and flexural strengths of concrete became increasingly less influenced by the inclusion of PP fibers and increasingly more influenced by the addition of SF. Besides, the inclusion of PP fibers resulted in the better efficiency in the improvement of toughness than SF. Furthermore, the inclusion of fibers did not have significant effect on the durability of the concrete. Results of electrical resistivity, chloride ion penetration and ultrasonic pulse velocity tests confirmed that HSFR-SCC had enough endurance against deterioration, lower chloride ion penetrability and minimum reinforcement corrosion rate.

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

A Study on the Formative Features of Black Fetish Fashion (블랙 페티시 패션의 조셩성에 관한 연구)

  • 이민경;한명숙
    • The Research Journal of the Costume Culture
    • /
    • v.7 no.2
    • /
    • pp.323-333
    • /
    • 1999
  • The purpose of this study was to analyze the meaning and formative features of the black color reflected on the fetish fashion. This study was proceeded mainly by analyzing with references and plates of magazine. The results of the study were as follows ; First, the sexual liberation and revolution have certainly led to a reassessment of sexual deviations, which changed the meaning of fetishism that has been only regarded as sexual perversion, so that it symbolied a new sexual perception and identification. As the result, black in fetish fashion was symbolized a new fetishism\`s definition which refused to distinguish male from female, and also reflected the meaning to express the second sex that wanted to express themselves. Second, the formative features of black color in fetish fashion have appeared tightness and bareness in form, and in material, glancing materials changed by the effect of light, and elasticity materials-leather, rubber, PVC, and laycra. By these features, black fetish fashion has drawn a higher attention on human body than the dress itself as a symbol about the psychology of erotic sensations and sexual images of the self appearing in black color.

  • PDF

Computational and Experimental Investigation on U-type Seal of Hydraulic Actuator (유압액추에이터용 U자형 시일의 해석 및 실험적 고찰)

  • Yoo, Myung-Ho;Kwon, Jong-Ho;Lee, Taek-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.80-87
    • /
    • 2006
  • Seals are usually made from elastomer, a kind of rubber, and it has the non-linearity and hyper-elasticity. U-type seals are used to prevent the leakage of internal fluid sealed in hydraulic actuator because they have more excellent performance than O-rings or rectangular seals. As a core part of hydraulic actuator, U-type seal gives much effect on performance and reliability of actuator. This study considers an NBR U-type seal under high pressure of a hydraulic actuator, and provides its deformation, stress-strain characteristic and contact force using the non-linear finite element analysis. Analysis results are compared with the experimental ones performed by the self-developed testing equipment. Verification result shows that this study presents a good application process for the effective design of U-type seals under high operation pressure.

Mechanical Behaviors of Electrospun Non-woven of PVC/PU blend (전기방사된 PVC/PU의 기계적 거동)

  • Lee, Bong-Seok;Lee, Keun-Hyung;Kim, Hak-Yong;Pyo, Soo-ho;Park, Sun-Woong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.269-270
    • /
    • 2003
  • Thermoplastic polyurethane is a engineering plastic with elasticity, abrasion resistance and good resistance to oil, grease and many solvents. Characteristics of poly(vinyl chloride) (PVC) are good general chemical resistance, excellent weatherablility, good insulate. properties, and self-extinguishing or flame resistance, etc. So it is used in widespread industrial fields[2]. (omitted)

  • PDF