• Title/Summary/Keyword: Self-elastic

Search Result 182, Processing Time 0.029 seconds

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

Comparison of Dynamic Responses According to Anchorage Type of Suspesion Bridges (현수교의 정착 형식에 따른 이동하중에 의한 동적 응답의 비교)

  • Suh, Jeong In;Kim, Ho Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.103-110
    • /
    • 2000
  • The suspension bridge is divided by an earth anchor and a self-anchor type according to the anchorage type. This study is to evaluate the dynamic effect of moving vehicles to suspension bridges. The results were presented with the dynamic magnification factor (DMF) by the effect of vehicle speed and weight according to the anchorage type. The vehicle model has 6 degrees of freedom to idealize nonlinear multi-leaf suspensions and elastic tires of tractor-trailer. The bridge was modelled with the 3-dimensional frame element and 3-dimensional elastic catenary cable element. The condition of deck surface is considered using the actual road spectra.

  • PDF

Experimental and Numerical Study on the Elastic-Plastic, Large Deflection, Post-Buckling Behavior of Axially Compressed Circular Cylindrical Tubes (축방향 압축력을 받는 원통형 박막소재의 좌굴후 탄소성 대변형에 관한 실험 및 해석 연구)

  • Kwon, Se-Mun;Yun, Hee-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.969-974
    • /
    • 2001
  • Circular cylindrical tubes are widely used in structures such as vehicles and aircraft structures, where light weight and high compressive/bending/torsional load carrying capacity are required. When axially compressed, relatively thick circular cylindrical tubes deform in a so-called ring mode. Each ring develops and completely collapses one by one until the entire length of the tube collapses. During the collapse process the tube absorbs a large amount of energy. Like honey-comb structures, circular cylindrical tubes are light weighted, are capable of high axial compressive load, and absorb a large amount of energy before being completely collapsed. In this report, the subject of axial plastic buckling of circular cylindrical tubes was reviewed first. Then, the axial collapse process of the tubes in a so-called ring mode was studied both experimentally and numerically. In the experiment, steel tubes were axially compressed slowly until they were completely collapsed. Fixed boundary condition was provided. Numerical study involves axisymmetric, elastic-plastic, large deflection, self-contact mechanisms. The measured and calculated results were presented and compared with each other. The purpose of the study was to evaluate the load carrying capacity and the energy absorbing capacity of the tube.

  • PDF

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

INTEGRITY ANALYSIS OF AN UPPER GUIDE STRUCTURE FLANGE

  • LEE, KI-HYOUNG;KANG, SUNG-SIK;JHUNG, MYUNG JO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.766-775
    • /
    • 2015
  • The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time-history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

The Analysis of Non-linear Interaction Problem between the Consolidation ground and the Upper Structure (압밀지반과 상부구조의 비선형 상호작용의 해석)

  • 이외득;정진환
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.327-336
    • /
    • 1997
  • When a structure is built on the consolidation ground, the instant elastic deflection occures according to the characteristics of the ground and the load on it. And the corresponding contact pressure is established. But, as time passes, the secondary consolidating deflection is added to the instant elastic deflection, the upper structure, due to its flexural rigidity, resist to the additional curvature. So the variation of the contact pressure occurs. And this new contact pressure exerts influence on the consolidation form again. The new consolidation form exerts influence on the contact pressure in return. This kind of interaction continues till all the consolidation of the ground is finished. So the consolidation problem can not be definded as the linear problem. This paper intends to scheme an approximate iteration method to analyse this non-linear interaction problem between the upper structure and the lower consolidation ground which supports the former.

  • PDF

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

A numerical study for initial elastic displacement at tunnel side-wall due to configuration of the tunnel excavation (굴착단면 형상에 따른 터널 초기탄성변위의 수치해석적 연구)

  • Kim, Sang-Hwan;Jung, Hyuk-Il;Lee, Min-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.175-184
    • /
    • 2002
  • Ground reaction curve is very useful information for estimating the installation time of the tunnel support. The ground reaction curve can be estimated by analytical closed form solutions derived in case of circular section and isotropic stress condition. The nature of the ground reaction, however, depends significantly on tunnel configurations. Nevertheless, few purely analytical and experimental studies of this problem due to tunnel configurations appear to have been carried out. Therefore, it is necessary to investigate the influence of tunnel configurations in order to use simply in practical design. This paper describes a numerical study for the intial elastic displacement in the ground reaction curve due to configuration of tunnel excavation. In order to evaluate the applicability of analytical closed form solution in practical design, the parametric studies were carried out by numerical analysis in elastic tunnel behaviour. In the studies, S value, namely configuration factor, defined as the ratio between tunnel height (b) and width (a), varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30 MPa for each S values. The results indicated that the self-supportability of ground is larger in the ground having low S value. It, however, is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It should be necessary to perform the additional numerical analysis.

  • PDF

Propagation of Elastic Waves in Fiber Reinforced Composites (섬유강화 복합재료 내의 탄성파 전파)

  • Kim, Jin-Yeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.65-72
    • /
    • 1996
  • A dynamic self-consistent method previously proposed and validated for the composites containing spherical inclusions is applied to the simplest two dimensional problems : SH wave propagation in unidirectional fiber reinforced composites. The self-consistent conditions for SH wave are derived without limitation on frequency and the wave speed and coherent attenuation are calculated for two composites. THe results of the present theory are compared with those of the multiple scattering theories and another self-consistent theory. At low volume fractions, the present theoretical results coincide with those of the multiple scattering theory using exact pair-correlation function, whereas the results based on another self-consistent theory deviate markedly from the others. As the volume fraction increases, the three theories give different results although they have qualitatively similar trends. The present theoretical results for composites considered in this paper exhibit less dispersion and physically realizable attenuation. An important observation is that the multiple scattering theory predicts vanishingly small attenuation at low frequency with volume fraction is high.

  • PDF