• Title/Summary/Keyword: Self-aggregates

Search Result 83, Processing Time 0.022 seconds

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

Long-Termed Behavior and Durability of Foam-Mixed Concrete Containing Porous Aggregates (다공성 골재를 함유한 기포혼합콘크리트의 장기거동 및 내구특성)

  • Kim, Sang Chel;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.113-123
    • /
    • 2012
  • The technology developed for the decrease of applying loads and self-weight of a structure is to improve conventional Foam Cement Banking Method (FCB) by applying mixed slurry of bottom ash, cement and foams. Since the foam-mixed concrete, which is a major material of the Bottom ash-mixed Light weight concrete Banking method (BLB) developed, contains mineral admixture such as cement, the behavior shows time-dependent deformation and deterioration of durability due to environmental exposure. Thus, this study is subject to figure out the characteristics of long-termed behavior and durability of the developed method by carrying out experiments for schemed parameters, which are considered to be factors affecting mainly on concrete's characteristics from mechanical analysis. As results of tests, it was found that the developed concrete offers higher resistance than conventional foamed concrete in terms of long-termed behaviors associated with drying shrinkage and creep, and durability problems of freeze-thaw and carbonation processes, especially with addition of bottom ash.

A CASE REPORT OF KIKUCHI-FUJIMOTO DISEASE (Kikuchi-Fujimoto Disease의 치험례)

  • Jang, Tae-Hwa;Kim, Jin-Wook;Kwon, Tae-Geon;Jang, Hyung-Jung;Kim, Chin-Soo;Lee, Sang-Han
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.6
    • /
    • pp.548-553
    • /
    • 2007
  • Kikuchi-Fujimoto disease is a rare disease first described in 1972 by Kikuchi and Fujimoto et al. The disease is described as a benign and unusual self-limiting histiocytic necrotizing lymphadenitis of unknown origin, which is characterized histologically by necrotic foci surrounded by histiocytic aggregates. is usually manifested with lymphadenopathy and high fever. This disease mostly affects young Asian women between 20 and 30 years of age and has rarely been reported in children. Main symptoms are indolent or light tender, enlarged lymph nodes in the neck area. The correct diagnosis requires the histologic examination of the lymph node. Kikuchi-Fujimoto disease is easily confused histologically and clinically with lymphoma and systemic lupus erythematosis histologically and clinically. Although it is an uncommon cause of fever of unknown origin, early recognition of KFD is very important and will minimize potentially harmful and unnecessary evaluations and treatments. We reported a case, a 23-year old man who had Kikuchi-Fujimoto disease with a literature review.

Comparison of Carbon Sequestration Potential of Winter Cover Crop Cultivation in Rice Paddy Soil

  • Lee, Seul-Bi;Haque, Mozammel;Pramanik, Prabhat;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.234-242
    • /
    • 2011
  • BACKGROUND: Cultivation of winter cover crops is strongly recommended to increase land utilization efficiency, animal feeding material self-production, and to improve soil and environmental quality. METHODS AND RESULTS: Four major winter crops (barley, Chinese milk vetch, hairy vetch, and rye) having different C/N ratio were seeded in silt loam paddy soil in the November 2007 and the aboveground biomass was harvested on the late May 2008 to evaluate its effectiveness as green manure, and root biomass distribution was characterized at the different depth (0-60 cm) to study its effect on physical properties and carbon sequestration in soil. During this experiment, the naturally growing weed in the rice paddy soil in Korea, short awn foxtail (Alopecurus aequalis Sobol), was considered as control treatment. Above-ground biomass of all cover crops selected was significantly higher than that of the control treatment (2.8 Mg/ha). Comparatively higher above-ground biomass productivity of rye and barley (15.8 and 13.5 Mg/ha, respectively) suggested that these cover crops possibly had the highest potential as a green manure and animal feeding material. Root biomass production of different cover crops followed the same trend as that for their above ground biomass. Rye (Secale cereal) might have the highest potential for soil C accumulation (7893 C kg/ha) by root biomass development, and then followed by barley (6985 C kg/ha), hairy vetch (6467 C kg/ha), Chinese milk vetch (6671 C kg/ha), and control (5791 C kg/ha). CONCLUSION(s): Cover crops like rye and barley having high biomass productivity might be the most effective winter cover crops to increase organic carbon distribution in different soil aggregates which might be beneficial to improve soil structure, aeration etc. and C sequestration.

Effects of Feeder Cells on the Primary Culture of Ovarian Cell Populations from Adult Japanese Medaka (Oryzias latipes)

  • Ryu, Jun Hyung;Gong, Seung Pyo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.65-72
    • /
    • 2020
  • Fish ovarian germline stem cells (OGSCs) that have the abilities to self-renew and differentiate into functional gametes can be used in various researches and applications. A main issue to be solved for effective utilization of fish OGSCs is the development of their stable in vitro culture condition, but only few researches about fish OGSC culture have been reported so far. In this study, in order to find the clues to develop the culture condition for OGSCs from Japanese medaka (Oryzias latipes), we tried to establish somatic cell lines as a candidate for the feeder cells and evaluated its supporting effects on the culture of ovarian cell populations from O. latipes. As the results, the somatic cell lines could be established only from the embryonic tissues among three tissues derived from embryos, fins and ovaries. Three embryonic cell lines were tested as a feeder cell for the culture of ovarian cell population and all three cell lines induced cell aggregation formation of the cultured ovarian cells whereas the feeder-free condition did not. Furthermore, a significant cellular proliferation was observed in the ovarian cells cultured on two of three cell lines. As a trial to increase the capacity of the cell lines as a feeder cell that supports the proliferation of the cultured ovarian cells, we subsequently established a stable line that expresses the foreign O. latipes fibroblast growth factor 2 (FGF2) from an embryonic cell line and evaluated its effectiveness as a feeder cell. The ovarian cells cultured on FGF2 expressing feeder cells still formed cell aggregates but did not show a significant increase in cellular proliferation compared to those cultured on non-transformed feeder cells. The results from this study will provide the fundamental information for in vitro culture of medaka OGSCs.

Advanced Wastewater Treatment Process Using Aerobic Granular Sludge (AGS-SBR) (호기성 그래뉼 슬러지를 이용한 하수고도처리기술(AGS-SBR))

  • Choi, Han Na;Mo, Woo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • Aerobic granular sludge (AGS) can be classified as a type of self-immobilized microbial aggregates measuring more than 0.2 mm. It offers the option to simultaneously remove COD, N, and P that occur in different zones inside a granule. Also, AGS is characterized by high precipitability, treatability with high organic loading, and high tolerance to low temperature. In this study, a sequencing batch reactor inoculated with AGS (AGS-SBR) is a new advanced wastewater treatment process that was proven to grow AGS with integrated nutrient removal and low C/N ratio. A pilot plant, AGS-SBR with a capacity of 225 ㎥/d was installed at an S sewage treatment plant in Gyeonggi-do. The results of the operation showed that the water quality of the effluent indicated that the value of BOD5 was 1.5 mg/L, CODMn was 11.4 mg/L, SS was 6.2 mg/L, T-N was 13.2 mg/L, and T-P was 0.197 mg/L, and all of these values reliably satisfied an effluent standard (I Area). In winter, the T-N treatment efficiency at a lower temperature of less than 11℃ also showed reliability to meet the effluent standard of the I Area (20 mg/L or less). Analysis of microbial community in AGS showed a higher preponderance of beneficial microorganisms involved in denitrification and phosphorus accumulation compared with activated sludge. The power consumption and sludge disposal cost were reduced by 34.7% and 54.9%, respectively, compared to the domestic SBR type sewage treatment plant with a processing capacity of 1,000 ㎥/d or less.

Effect of Modified Casein to Whey Protein Ratio on Dispersion Stability, Protein Quality and Body Composition in Rats

  • Jeong, Eun Woo;Park, Gyu Ri;Kim, Jiyun;Yun, So-Yul;Imm, Jee-Young;Lee, Hyeon Gyu
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.855-868
    • /
    • 2021
  • The present study was designed to investigate the effects of protein formula with different casein (C) to whey protein (W) ratios on dispersion stability, protein quality and body composition in rats. Modification of the casein to whey protein (CW) ratio affected the extent of protein aggregation, and heated CW-2:8 showed a significantly increased larger particle (>100 ㎛) size distribution. The largest protein aggregates were formed by whey protein self-aggregation. There were no significant differences in protein aggregation when the CW ratios changed from 10:0 to 5:5. Based on the protein quality assessment (CW-10:0, CW-8:2, CW-5:5, and CW-2:8) for four weeks, CW-10:0 showed a significantly higher feed intake (p<0.05), but the high proportion of whey protein in the diet (CW-5:5 and CW-2:8) increased the feed efficiency ratio, protein efficiency ratio, and net protein ratio compared to other groups. Similarly, CW-2:8 showed greater true digestibility compared to other groups. No significant differences in fat mass and lean mass analyzed by dual-energy x-ray absorptiometry were observed. A significant difference was found in the bone mineral density between the CW-10:0 and CW-2:8 groups (p<0.05), but no difference was observed among the other groups. Based on the results, CW-5:5 improved protein quality without causing protein instability problems in the dispersion.

Potential use of local waste scoria as an aggregate and SWOT analysis for constructing structural lightweight concrete

  • Islam, A.B.M. Saiful;Walid, Walid;Al-Kutti, A.;Nasir, Muhammad;Kazmi, Zaheer Abbas;Sodangi, Mahmoud
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This study aims to investigate the influence of scoria aggregate (SA) and silica fume (SF) as a replacement of conventional aggregate and ordinary Portland cement (OPC), respectively. Three types of concrete were prepared namely normal weight concrete (NWC) using limestone aggregate (LSA) and OPC (control specimen), lightweight concrete (LWC) using SA and OPC, and LWC using SA and partial SF (SLWC). The representative workability and compressive strength properties of the developed concrete were evaluated, and the results were correlated with non-destructive ultrasonic pulse velocity and Schmidt hammer tests. The LWC and SLWC yielded compressive strength of around 30 MPa and 33 MPa (i.e., 78-86% of control specimens), respectively. The findings indicate that scoria can be beneficially utilized in the development of structural lightweight concrete. Present renewable sources of aggregate will preserve the natural resources for next generation. The newly produced eco-friendly construction material is intended to break price barriers in all markets and draw attraction of incorporating scoria based light weight construction in Saudi Arabia and GCC countries. Findings of the SWOT analysis indicate that high logistics costs for distributing the aggregates across different regions in Saudi Arabia and clients' resistant to change are among the major obstacles to the commercialized production and utilization of lightweight concrete as green construction material. The findings further revealed that huge scoria deposits in Saudi Arabia, and the potential decrease in density self-weight of structural elements are the major drivers and enablers for promoting the adoption of lightweight concrete as alternative green construction material in the construction sector.

Bacterial Quorum Sensing and Quorum Quenching for the Inhibition of Biofilm Formation (박테리아의 Quorum Sensing 및 생물막 형성 억제를 위한 Quorum Quenching 연구 동향)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • Quorum sensing (QS) is a cell-to-cell communication system, which is used by many bacteria to regulate diverse gene expression in response to changes in population density. Bacteria recognize the differences in cell density by sensing the concentration of signal molecules such as N-acyl-homoserine lactones (AHL) and autoinducer-2 (AI-2). In particular, QS plays a key role in biofilm formation, which is a specific bacterial group behavior. Biofilms are dense aggregates of packed microbial communities that grow on surfaces, and are embedded in a self-produced matrix of extracellular polymeric substances (EPS). QS regulates biofilm dispersal as well as the production of EPS. In some bacteria, biofilm formations are regulated by c-di-GMP-mediated signaling as well as QS, thus the two signaling systems are mutually connected. Biofilms are one of the major virulence factors in pathogenic bacteria. In addition, they cause numerous problems in industrial fields, such as the biofouling of pipes, tanks and membrane bioreactors (MBR). Therefore, the interference of QS, referred to as quorum quenching (QQ) has received a great deal of attention. To inhibit biofilm formation, several strategies to disrupt bacterial QS have been reported, and many enzymes which can degrade or modify the signal molecule AHL have been studied. QQ enzymes, such as AHL-lactonase, AHL-acylase, and oxidoreductases may offer great potential for the effective control of biofilm formation and membrane biofouling in the future. This review describes the process of bacterial QS, biofilm formation, and the close relationship between them. Finally, QQ enzymes and their applications for the reduction of biofouling are also discussed.

The Stress-Strain Properties of No-Fines Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량조골재(人工輕量粗骨材)를 사용(使用)한 무세골재(無細骨材) 경량(輕量)콘크리트의 응력(應力)-변형특성(變形特性))

  • Min, Jeong Ki;Kim, Seong Wan;Sung, Chan Yong;Kim, Kyung Tae
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.120-130
    • /
    • 1996
  • Concrete is the most commonly used structural materials, but in concrete construction, its self-weight represents a very large proportion of the total load on the structure, and there are clearly considerable advantages in reducing the density of concrete. This study was carried out to investigate the stress-strain properties of no-fines synthetic lightweight concrete with synthetic lightweight coarse aggregates. The used synthetic lightweight coarse aggregate were two types, one was expanded clay with grading 3~8mm, the other is pumice stone with grading 4.75~10mm. The results of this study were summarized as follows ; The static modulus of elasticity of the synthetic lightweight concrete was $1.8{\times}10^5kg/cm^2$ at type CE using the expanded clay and $1.6{\times}10^5kg/cm^2$ at type CL using the pumice stone. The dynamic modulus of elasticity was $1.9{\times}10^5kg/cm^2$(CE) and $2.0{\times}10^5kg/cm^2$(CL). The dynamic modulus of elasticity was 10~30% larger than that of the static modulus of elasticity. The load-time curves of synthetic lightweight concrete were shown approximately similar to each other type except for added foaming agent. The stress-strain curves in uniaxial compressive of synthetic lightweight concrete were similar to each other.

  • PDF