• Title/Summary/Keyword: Self-Organizing Model

Search Result 202, Processing Time 0.023 seconds

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control (로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발)

  • Koo, Tae-Hoon;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

Attitude Control of Planar Space Robot based on Self-Organizing Data Mining Algorithm

  • Kim, Young-Woo;Matsuda, Ryousuke;Narikiyo, Tatsuo;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents a new method for the attitude control of planar space robots. In order to control highly constrained non-linear system such as a 3D space robot, the analytical formulation for the system with complex dynamics and effective control methodology based on the formulation, are not always obtainable. In the proposed method, correspondingly, a non-analytical but effective self-organizing modeling method for controlling a highly constrained system is proposed based on a polynomial data mining algorithm. In order to control the attitude of a planar space robot, it is well known to require inputs characterized by a special pattern in time series with a non-deterministic length. In order to correspond to this type of control paradigm, we adopt the Model Predictive Control (MPC) scheme where the length of the non-deterministic horizon is determined based on implementation cost and control performance. The optimal solution to finding the size of the input pattern is found by a solving two-stage programming problem.

  • PDF

Implementation of Fuzzy Self-Organizing Networks Algorithm and Its Application to Nonlinear Systems (퍼지 자기구성 네트워크 알고리즘의 구현 및 비선형 시스템으로의 응용)

  • Park, Byoung-Jun;Kim, Dong-Won;Lee, Dae-Keun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3001-3003
    • /
    • 2000
  • In this paper. we propose Fuzzy Self-Organizing Networks (FSON) using both Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FSON is generated from the mutually combined structure of both FNN and PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get the better output performance with superb predictive ability. In order to evaluate the performance of proposed models. we use the nonlinear data sets. The results show that the proposed FSON can produce the model with higher accuracy and more robustness than previous any other method.

  • PDF

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Application of Soft Computing Model for Hydrologic Forecasting

  • Kim, Sung-Won;Park, Ki-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.336-339
    • /
    • 2012
  • Accurate forecasting of pan evaporation (PE) is very important for monitoring, survey, and management of water resources. The purpose of this study is to develop and apply Kohonen self-organizing feature maps neural networks model (KSOFM-NNM) to forecast the daily PE for the dry climate region in south western Iran. KSOFM-NNM for Ahwaz station was used to forecast daily PE on the basis of temperature-based, radiation-based, and sunshine duration-based input combinations. The measurements at Ahwaz station in south western Iran, for the period of January 2002 - December 2008, were used for training, cross-validation and testing data of KSOFM-NNM. The results obtained by TEM 1 produced the best results among other combinations for Ahwaz station. Based on the comparisons, it was found that KSOFM-NNM can be employed successfully for forecasting the daily PE from the limited climatic data in south western Iran.

  • PDF

Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN (진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Bayesian Model for Probabilistic Unsupervised Learning (확률적 자율 학습을 위한 베이지안 모델)

  • 최준혁;김중배;김대수;임기욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.849-854
    • /
    • 2001
  • GTM(Generative Topographic Mapping) model is a probabilistic version of the SOM(Self Organizing Maps) which was proposed by T. Kohonen. The GTM is modelled by latent or hidden variables of probability distribution of data. It is a unique characteristic not implemented in SOM model, and, therefore, it is possible with GTM to analyze data accurately, thereby overcoming the limits of SOM. In the present investigation we proposed a BGTM(Bayesian GTM) combined with Bayesian learning and GTM model that has a small mis-classification ratio. By combining fast calculation ability and probabilistic distribution of data of GTM with correct reasoning based on Bayesian model, the BGTM model provided improved results, compared with existing models.

  • PDF

Fault Detection and Diagnosis for EVA Production Processes Using AE-SOM (AE-SOM을 이용한 EVA 생산 공정 이상 검출 및 진단)

  • Park, Byeong Eon;Ji, Yumi;Sim, Ye Seul;Lee, Kyu-Hwang;Lee, Ho Kyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.408-415
    • /
    • 2020
  • In this study, the AE-SOM method, which combines auto-encoder and self-organizing map, is used to detect and diagnose faults in EVA production process. Then, the fault propagation pathways are identified using Granger causality test. One year and seven months of operation data were obtained to detect faults of the process, and the process variables of the autoclave reactor are mainly analyzed. In the data pretreatment process, the data are standardized and 200 samples of each grade are randomly chosen to obtain a fault detection model. After that, the best matching unit (BMU) of each grade is confirmed by applying AE-SOM. The faults are determined based on each BMU. When a fault is found, the most causative variable of the fault is identified by using a contribution plot, and the fault propagation pathway is identified by Granger causality test. The prognostic of the two shutdowns is detected, and the fault propagation pathway caused by the faulty variable was analyzed.