• Title/Summary/Keyword: Self-Organizing Model

Search Result 201, Processing Time 0.036 seconds

Flood Stage Forecasting using Class Segregation Method of Time Series Data (시계열자료의 계층분리기법을 이용한 하천유역의 홍수위 예측)

  • Kim, Sung-Weon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.669-673
    • /
    • 2008
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

A Study on the Boiler System Control of Fossil-Power Plant Using a Self-organizing Fuzzy Logic Control (자동 학습 퍼지 제어기를 이용한 발전용 보일러 시스템 제어에 관한 연구)

  • Mun, Un-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.514-519
    • /
    • 2001
  • This Paper presents an application of a on-line self-organizing fuzzy logic controller to a boiler system of fossil-power plant. A boiler-turbine system is described as a MIMO nonlinear system in this paper. Then, three single loop fuzzy logic controllers are designed independently. The control rules and the membership functions of proposed fuzzy logic control system are generated automatically without using plant model. The simulation shows successful results for wide range operation of boiler system of fossil-power plant.

  • PDF

A Trial of Disaster Risk Diagnosis Based on Residential House Structure by a Self-Organizing Map

  • Wakuya, Hiroshi;Mouri, Yoshihiko;Itoh, Hideaki;Mishima, Nobuo;Oh, Sang-Hoon;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.3-4
    • /
    • 2015
  • A self-organizing map (SOM) is a good tool to visualize applied data in the form of a feature map. With the help of such functions, a disaster risk diagnosis based on the residential house structure is tried in this study. According to some computer simulations with actual residential data, it is found that overall tendencies in the developed feature map are acceptable. Then, it is concluded that the proposed method is an effective means to estimate disaster risk appropriately.

  • PDF

Hybrid Self Organizing Map using Monte Carlo Computing

  • Jun Sung-Hae;Park Min-Jae;Oh Kyung-Whan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function (펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

A Method for Producing Animation as a Series of Backward-Projected Patterns in a Self-Organizing Map

  • Wakuya, Hiroshi;Takahama, Eishi;Itoh, Hideaki;Fukumoto, Hisao;Furukawa, Tatsuya
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.195-196
    • /
    • 2012
  • A self-organizing map (SOM) can be seen as an analytical tool to discover some underlying rules in the given data set. Based on such distinctive nature called topology-preserving projection, a new method for generating intermediate patterns was proposed. Then, following to this method, producing animation as a series of backward-projected patterns just like a flip book is tried in this article.

  • PDF

The Implementation of the structure and algorithm of Fuzzy Self-organizing Neural Networks(FSONN) based on FNN (FNN에 기초한 Fuzzy Self-organizing Neural Network(FSONN)의 구조와 알고리즘의 구현)

  • 김동원;박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.114-117
    • /
    • 2000
  • In this paper, Fuzzy Self-organizing Neural Networks(FSONN) based on Fuzzy Neural Networks(FNN) is proposed to overcome some problems, such as the conflict between ovefitting and good generation, and low reliability. The proposed FSONN consists of FNN and SONN. Here, FNN is used as the premise part of FSONN and SONN is the consequnt part of FSONN. The FUN plays the preceding role of FSONN. For the fuzzy reasoning and learning method in FNN, Simplified fuzzy reasoning and backpropagation learning rule are utilized. The number of layers and the number of nodes in each layers of SONN that is based on the GMDH method are not predetermined, unlike in the case of the popular multi layer perceptron structure and can be generated. Also the partial descriptions of nodes can use various forms such as linear, modified quadratic, cubic, high-order polynomial and so on. In this paper, the optimal design procedure of the proposed FSONN is shown in each step and performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

  • PDF

An Optimal Clustering using Hybrid Self Organizing Map

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.10-14
    • /
    • 2006
  • Many clustering methods have been studied. For the most part of these methods may be needed to determine the number of clusters. But, there are few methods for determining the number of population clusters objectively. It is difficult to determine the cluster size. In general, the number of clusters is decided by subjectively prior knowledge. Because the results of clustering depend on the number of clusters, it must be determined seriously. In this paper, we propose an efficient method for determining the number of clusters using hybrid' self organizing map and new criterion for evaluating the clustering result. In the experiment, we verify our model to compare other clustering methods using the data sets from UCI machine learning repository.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Fuzzy Self-Organizing Control of Environmental Temperature Chamber (온도챔버의 퍼지 자동조정 제어시스템)

  • 김인식;권오석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.34-40
    • /
    • 1994
  • The design and implementation of a fuzzy self-organizing controller for an environmental temperature chamber is discussed. The chamber is a non-linear, time-variant system with delay-time and dead-time. And the parameter tuning is required in PI control when the performance degraded. However the proposed fuzzy-SOC monitors the performance of the process. modifies the data base, and performs the delay-time compensation based on the idealized process model. A series of experiments was performed for the conventional PI and the fuzzy-SOC. These experimental results show the usefulness of the fuzzy-SOC.

  • PDF