• 제목/요약/키워드: Self-Learning Fuzzy Control

검색결과 67건 처리시간 0.023초

유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control)

  • 김상민;한우용;이창구
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권12호
    • /
    • pp.691-696
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

퍼지-신경망을 이용한 시간지연 공정 시스템에 대한 적응제어 기법

  • 최중락;곽동훈;이동익
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.994-998
    • /
    • 1996
  • We propose an approach to integrating fuzzy logic control with RBF(Radial Basis Function) networks and show how the integrated network can be applied to multivariable self-organizing and self-learning fuzzy controller. Using the hybrid learning algorithm. To investigate its usefulness and performance, this controller is applied to a time-delayed process system. Simulation results show good control performance and fast convergency in hybrid loaming method.

  • PDF

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

자기 동조 퍼지 논리 제어기를 위한 학습 알고리즘의 성능 분석 (Performance analysis of learning algorithm for a self-tuning fuzzy logic controller)

  • 정진현;이진혁
    • 한국통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2189-2198
    • /
    • 1994
  • 본 논문에서는 퍼지 제어 시스템에 사용되는 퍼지 논리 제어기의 성능을 향상시키기 위한 여러가지 알고리즘들 중에서 학습기법에 속하는 퍼지 메타 규칙에 기초한 자기 동조 기법을 사용하여 직류 서보 전동기 제어를 위한 자기 동조 퍼지 논리 제어기를 구현해서, 자기 동조 퍼지 논리 제어기의 설계와 시뮬레이션 및 실험 결과를 고찰하고, 그 결과를 일반적인 퍼지 논리 제어기의 결과와 비교하여 자기 동조 퍼지 논리 제어기의 성능을 평가한다.

  • PDF

볼과 빔 시스템의 퍼지 학습 제어 (Fuzzy Learning Control for Ball & Beam System)

  • 주해호;정병묵;이재원;이화조;이영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.439-443
    • /
    • 1996
  • A fuzzy teaming controller is experimentally designed to control the ball k beam system in this paper. Although most fuzzy controllers have been built just to emulate human decision-making behavior, it is necessary to construct the rule bases by using a learning method with self-improvement when it is difficult or impossible to get them only by expert's experience. The algorithm introduces a reference model to generate a desired output and minimizes a performance index function based on the error and error-rate using the gradient-decent method. In our balancing experiment of the ball & beam system, this paper shows that the fuzzy control rules by learning are superior to the expert's experience.

  • PDF

Phase Compensation of Fuzzy Control Systems and Realization of Neuro-fuzzy Compenastors

  • Tanaka, Kazuo;Sano, Manabu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.845-848
    • /
    • 1993
  • This paper proposes a design method of fuzzy phase-lead compensator and its self-learning by neural network. The main feature of the fuzzy phase-lead compensator is to have parameters for effectively compensating phase characteristics of control systems. An important theorem which is related to phase-lead compensation is derived by introducing concept of frequency characteristics. We propose a design procedure of fuzzy phase-lead compensators for linear controlled objects. Furthermore, we realize a neuro-fuzzy compensator for unknown or nonlinear controlled objects by using Widrow-Hoff learning rule.

  • PDF

로봇 매니퓰레이터의 힘제어를 위한 퍼지 학습제어에 관한 연구 (A Study on the Fuzzy Learning Control for Force Control of Robot Manipulators)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.581-588
    • /
    • 2002
  • A fuzzy learning control algorithm is proposed in this paper. In this method, two fuzzy controllers are used as a feedback and a feedforward type. The fuzzy feedback controller can be designed using simple knowledge for the controlled system. On the other hand, the fuzzy feedforward controller has a self-organizing mechanism and therefore, it does not need any knowledge in advance. The effectiveness of the proposed algorithm is demonstrated by experiment on the position and force control problem of a parallelogram type robot manipulator with two degrees of freedom. It is shown that the rapid learning and the robustness can be achieved by adopting the proposed method.

자기조직형 Fuzzy Neural Network에 의한 응집제 투입률 자동제어 (Automatic Control of Coagulant Dosing Rate Using Self-Organizing Fuzzy Neural Network)

  • 오석영;변두균
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this report, a self-organizing fuzzy neural network is proposed to control chemical feeding, which is one of the most important problems in water treatment process. In the case of the learning according to raw water quality, the self-organizing fuzzy network, which can be driven by plant operator, is very effective, Simulation results of the proposed method using the data of water treatment plant show good performance. This algorithm is included to chemical feeder, which is composed of PLC, magnetic flow-meter and control valve, so the intelligent control of chemical feeding is realized.

자기 학습 구조를 가진 퍼지 제어기의 응용 (Application of a Fuzzy Controller with a Self-Learning Structure)

  • 서영노;장진현
    • 한국통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.1182-1189
    • /
    • 1994
  • 본 논문에서는 성능 평가에 의한 자기 학습 구조를 가진 퍼지 제어기를 연구하였다. 퍼지 제어기는 퍼지 논리에 기초를 두고 있고, 퍼지 논리는 실세계의 근사적이고 불확실한 현상을 기술하는데 효과적이다. 이러한 퍼지 논리의 추론으로 제어를 수행하지만 퍼지 제어기의 중요한 부분인 맴버쉽 함수와 제어 규칙을 설정하는 것은 쉬운일이 아니다. 이런 문제점을 보완하기 위해 제어 목표값에 도달한 때까지 스스로 제어규칙을 개선하는 자기 학습 제어기를 설계하였다. 본 논문에서 퍼지 제어기의 학습은 평가 기준표(Performance Index)을 이용하여 이루어진다. 퍼지 제어기의 구현은 386PC을 기본으로 하며, D/A변환기, PWM(Pulse Width Modulation) 모터 드라이브 회로 등이 포함된 인터페이스 카드를 제작하여 제어 대상체의 데이터를 처리하였다. 공과 막대기 시스템(Ball and Beam system)을 제어 플렌트로 구현하여 얻은 실험 데이터와 이에 대한 컴퓨터 시뮬레이션을 통하여 얻은 데이터를 서로 비교하여서 자기 학습 구조를 갖는 퍼지 제어기의 유용성을 평가하였다. 실험의 결과는 학습 구조가 없는 퍼지 제어기보다 학습 구조를 가진 제어기가 정상상태 도달시간(Settling Time)에서 약 10%정도 빠르게 개선되었다.

  • PDF

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF