• Title/Summary/Keyword: Self-Governing capacity

Search Result 22, Processing Time 0.019 seconds

Production of Cloned Jeju Black Cattle (Korean Cattle) from SCNT Embryo using Vitrification, One-Step Dilution and Direct Transfer Technique (초자화 동결과 1-단계 융해된 체세포 핵이식란의 직접 이식 기술로 제주흑우 복제소 생산)

  • Kim, Eun-Young;Park, Min-Jee;Kim, Jae-Youn;Park, Hyo-Young;Noh, Eun-Ji;Noh, Eun-Hyung;Song, Dong-Hwan;Oh, Chang-Eon;Kim, Young-Hoon;Mun, Seong-Ho;Lee, Dong-Sun;Ko, Moon-Suck;Riu, Key-Zung;Park, Se-Pill
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • One-step dilution and direct transfer would be a practical technique for the field application of frozen embryo. This study was to examine whether Jeju Black Cattle (JBC, Korean Cattle) can be successfully cloned from vitrified and one-tep diluted somatic cell nuclear transfer (SCNT) blastocyst after direct transfer. For vitrification, JBC-SCNT blastocysts were serially exposed in glycerol (G) and ethylene glycol (EG) mixtures [10%, (v/v) G for 5 min., 10% G plus 20% EG (v/v) for 5 min., and 25% G plus 25% EG (v/v) for 30 sec.] which is diluted in 10% FBS added D-PBS. And then SCNT blastocysts were loaded in 0.25 ml mini straw, placed in cold nitrogen vapor for 3 min. and then plunged into $LN_2$. One-step dilution in straw was done in $25^{\circ}C$ water for 1 min, by placing vertically in the state of plugged-end up and down for 0.5 min, respectively. When in vitro developmental capacity of vitrified SCNT blastocyst was examined at 48 h after one-step dilution, hatched rate (56.4%) was slightly lower than that of control group (62.5%). In field trial, when the vitrified-thawed SCNT blastocysts were transferred into uterus of synchronized 5 recipients, a cloned female JBC was delivered by natural birth on day 299 and healthy at present. In addition, when the short tandem repeat marker analysis of the cloned JBC was evaluated, microsatellite loci of 11 numbers was perfectly matched genotype with donor cell (BK94-14). This study suggested that our developed vitrification and one-step dilution technique can be applied effectively on field trial for cloned animal production, which is even no longer in existence.

Adsorption Characteristics of Acetone, Benzene and Methyl Mercaptan according to the Surface Chemistry and Pore Structure of Activated Carbons Prepared from Waste Citrus Peel in the Fixed Bed Adsorption Reactor (고정층 흡착 반응기에서 폐감귤박 활성탄의 표면 화학적 특성과 세공구조에 따른 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.237-243
    • /
    • 2018
  • The surface chemistry of WCK-AC, WCN-AC and WCZ-AC which are activated carbons prepared from waste citrus peel using KOH, NaOH, and $ZnCl_2$ as activating chemicals were investigated. Also the relationships between the adsorption capacities of the target gases such as acetone, benzene and methyl mercaptan (MM) by the prepared activated carbons and the pore characteristics of each activated carbon were examined. According to XPS analysis of the prepared activated carbons, graphite and phenolic were the main surface functional groups of C1, and the sum of phenol, carbonyl and carboxyl groups increased in the order of WCK-AC > WCN-AC > WCZ-AC. The breakthrough curves obtained from the adsorption experiments for the three target gases in the fixed bed adsorption reactor were well simulated by the empirical equations proposed by Yoon and Nelson. The adsorption capacity for acetone, benzene and MM was larger for activated carbons with the larger sum of surface functional groups. The larger the specific surface area and the pore volume of activated carbons and the smaller the pore size, the better the adsorption performance. In particular, the specific surface area was the best criterion for the adsorption performance of activated carbons used in this study.