• Title/Summary/Keyword: Self-Excitation

Search Result 143, Processing Time 0.024 seconds

High Dispersion Spectra of the Elliptical Planetary Ring Nebula NGC 6803

  • Lee, Seong-Jae;Hyung, Siek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.80.1-80.1
    • /
    • 2012
  • NGC 6803 is an elliptical ring shape planetary nebula. We analyzed the high dispersion spectra which had been observed with the Hamilton Echelle Spectrograph attached to the 3-m Shane telescope of Lick Observatory. We also investigated the low dispersion UV spectral data obtained with the 60-cm interstellar ultraviolet explorer. Diverse excitation lines were found from neutral to quadruply ionized ions. The temperature diagnostic lines indicate relatively low electron temperatures, i.e., $T_{\epsilon}{\leq}9500$ K for most lines except for [ClIV] - 11,500 K. In spite of its simplistic bi-laterally symmetrical elliptical shape, the nebula appears to be very complex of a hugh density range from 1300 to 80,000 $cm^3$. A comparison of the two epoch data suggests that the density increase occurred in the high excitation line zone near the inner boundary. We derived the chemical abundances of He, C, N, O, Ne, S, Ar, Cl, and K. The chemical abundances of NGC 6803 are enhanced compared with the average Galactic planetary nebula. Our self-consistent photo-ionization model study implies that the effective temperature of the central star is 90,000 K and its luminosity is 2400 $L_{\odot}$. The evolutionary track suggests that the progenitor of NGC 6803 was about 0.9 -- 1.0 $M_{\odot}$ star, which might be born from a metal-rich zone near the galactic disk, but now relocated into the present high Galactic latitude.

  • PDF

Proton Acceleration in Weak Quasi-parallel Intracluster Shocks: Injection and Early Acceleration

  • Kang, Hyesung;Ryu, Dongsu;Ha, Ji-Hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2018
  • Collisionless shocks with low sonic Mach numbers, M<4, are expected to accelerate cosmic ray (CR) protons via diffusive shock acceleration (DSA) in the intracluster medium (ICM). However, observational evidence for CR protons in the ICM has yet to be established. Performing particle-in-cell simulations, we study the injection of protons into DSA and the early development of a nonthermal particle population in weak shocks in high ${\beta}$ plasmas. Reflection of incident protons, self-excitation of plasma waves via CR-driven instabilities, and multiple cycles of shock drift acceleration are essential to the early acceleration of CR protons in supercritical quasi-parallel shocks. We find that only in ICM shocks with $M{\geq}2.3$, a sufficient fraction of incoming protons are reflected by the overshoot in the shock electric potential and magnetic mirror at locally perpendicular magnetic fields, leading to efficient excitation of magnetic waves via CR streaming instabilities and the injection into the DSA process. Since a significant fraction of ICM shocks have M < 2.3 CR proton acceleration in the ICM might be less efficient than previously expected. This may explain why the diffuse gamma-ray emission from galaxy clusters due to proton-proton collisions has not been detected so far.

  • PDF

Application of Principal Component Analysis and Self-organizing Map to the Analysis of 2D Fluorescence Spectra and the Monitoring of Fermentation Processes

  • Rhee, Jong-Il;Kang, Tae-Hyoung;Lee, Kum-Il;Sohn, Ok-Jae;Kim, Sun-Yong;Chung, Sang-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.432-441
    • /
    • 2006
  • 2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinant Escherichia coli and Saccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.

Self-Assembled Polymeric Nanoparticles of Poly(ethylene glycol) Grafted Pullulan Acetate as a Novel Drug Carrier

  • Jung, Sun-Woong;Jeong, Young-Il;Kim, Young-Hoon;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.562-569
    • /
    • 2004
  • Self-assembling nanospheres of hydrophobized pullulan have been developed. Pullulan acetate (PA), as hydrophobized pullulan, was synthesized by acetylation. Carboxymethylated poly(ethylene-glycol) (CMPEG) was introduced into pullulan acetate (PA) through a coupling reaction using N, N'-dicyclohexyl carbodiimide (DCC). A synthesized PA-PEG-PA (abbreviated as PEP) conjugate was confirmed by Fourier transform-infrared (FT-IR) spectroscopy. Since PEP conjugates have amphiphilic characteristics in aqueous solution, polymeric nanoparticles of PEP conjugates were prepared using a simple dialysis method in water. From the analysis of fluorescence excitation spectra primarily, the critical association concentration (CAC) of this conjugate was found to be 0.0063 g/L. Observations by scanning electron microscopy (SEM) showed the spherical morphologies of the PEP nanoparticles. The particle size distribution of the PEP conjugates was determined using photon correlation spectroscopy (PCS) and the intensity-average particle size was 193.3 ${\pm}$ 13.53 nm with a unimodal distribution. Clonazepam (CNZ), as a model drug, was easy to entrap into polymeric nanoparticles of the PEP conjugates. The drug release behavior was mainly diffusion controlled from the core portion.

A Design of Parameter Self Tuning Fuzzy Controller to Improve Power System Stabilization with SVC System (SVC계통의 안정도 향상을 위한 파라미터 자기조정 퍼지제어기의 설계)

  • Joo, Sok-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a self tuning fuzzy controller for a synchronous generator excitation and SVC system. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method.

Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single- Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Noro, Osamu;Sato, Shinji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize the generated terminal voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of the independent inductive load variations and the prime mover speed changes The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor FC in parallel with the thyristor switched capacitor TSC and the thyristor controlled reactor TCR The feedback closed-loop terminal voltage responses in the single-phase SEIG coupled by a VSPM with different inductive passive load disturbances using the single-phase SVC with the PI controller are considered and discussed herem. A VSPM coupled the single-phase SEIG prototype setup is established. Its experimental results are illustrated as compared with its simulation ones and give good agreements with the digital simulation results for the single-phase SEIG driven by a VSPM, which is based on the SVC voltage regulation feedback control scheme.

A Self-Excited Induction Generator with Simple Voltage Regulation Suitable for Wind Energy

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.205-216
    • /
    • 2004
  • In this paper, a three-phase induction machine-based wind power generation scheme is proposed. This scheme uses a low-cost diode bridge rectifier circuit connected to an induction machine via an ac load voltage regulator (AC-LVR) to regulate dc power transfer. The AC-LVR is used to regulate the DC load voltage of the diode bridge rectifier circuit which is connected to the three-phase self-excited induction generator (SEIG). The excitation of the three-phase SEIG is supplied by the static VAR compensator (SVC). This simple method for obtaining a full variable-speed wind turbine system by applying a back-to-back power converter to a wound rotor induction generator is useful for wind power generation at widely varying speeds. The dynamic performance responses and the experimental results of connecting a 5kW 220V three-phase SEIG directly to a diode bridge rectifier are presented for various loads. Moreover, the steady-state simulated and experimental results of the PI closed-loop feedback voltage regulation scheme prove the practical effectiveness of these simple methods for use with a wind turbine system.

Sliding Friction of Elastomer Composites in Contact with Rough Self-affine Surfaces: Theory and Application (자기-아핀 표면 특성을 고려한 유기탄성체 복합재료 마찰 이론 및 타이어 트레드/노면 마찰 응용)

  • Bumyong Yoon;Yoon Jin Chang;Baekhwan Kim;Jonghwan Suhr
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • This review paper presents an introduction of contact mechanics and rubber friction theory for sliding friction of elastomer composites in contact with rough surfaces. Particularly, Klüppel & Heinrich theory considers the self-affine (or fractal) characteristic for rough surfaces to predict adhesion and hysteresis frictions of elastomers based on the contact mechanics of Greenwood & Williamson. Due to dynamic excitation process of elastomer composites while sliding in contact with multiscale surface roughness (or asperity), viscoelastic properties in a wide frequency range becomes major contributor to friction behaviors. A brief description and examples are provided to construct a viscoelastic master curve considering nonlinear viscoelasticity of elastomer composites. Finally, application of rubber friction theory to tire tread compounds in traction with road surfaces is discussed with several experimental and theoretical results.

Numerical Simulation of Self-excited Combustion Oscillation in a Dump Combustor with Bluff-body (둔체를 갖는 연소기에서 자려 연소 진동에 관한 수치해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Kim, Dae-Hee;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.659-668
    • /
    • 2008
  • Combustion instability has been considered as very important issue for developing gas turbine and rocket engine. There is a need for fundamental understanding of combustion instability. In this study, combustion instability was numerically and experimentally investigated in a dump combustor with bluff body. The fuel and air mixture had overall equivalence ratio of 0.9 and was injected toward dump combustor. The pressure oscillation with approximately 256Hz was experimentally obtained. For numerical simulation, the standard k-$\varepsilon$ model was used for turbulence and the hybrid combustion model (eddy dissipation model and kinetically controlled model) was applied. After calculating steady solution, unsteady calculation was performed with forcing small perturbation on initial that solution. Pressure amplitude and frequency measured by pressure sensor is nearly the same as those predicted by numerical simulation. Furthermore, it is clear that a combustion instability involving vortex shedding is affected by acoustic-vortex-combustion interaction. The phase difference between the pressure and velocity is $\pi$/2, and that between the pressure and heat release rate is in excitation range described by Rayleigh, which is obvious that combustion instability for the bluff body combustor meets thermoacoustic instability criterion.

QUANTIFYING DARK GAS

  • LI, DI;XU, DUO;HEILES, CARL;PAN, ZHICHEN;TANG, NINGYU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.75-78
    • /
    • 2015
  • A growing body of evidence has been supporting the existence of so-called "dark molecular gas" (DMG), which is invisible in the most common tracer of molecular gas, i.e., CO rotational emission. DMG is believed to be the main gas component of the intermediate extinction region from Av~0.05-2, roughly corresponding to the self-shielding threshold of $H_2$ and $^{13}CO$. To quantify DMG relative to $H{\small{I}}$ and CO, we are pursuing three observational techniques; $H{\small{I}}$ self-absorption, OH absorption, and THz $C^+$ emission. In this paper, we focus on preliminary results from a CO and OH absorption survey of DMG candidates. Our analysis shows that the OH excitation temperature is close to that of the Galactic continuum background and that OH is a good DMG tracer co-existing with molecular hydrogen in regions without CO. Through systematic "absorption mapping" by the Square Kilometer Array (SKA) and ALMA, we will have unprecedented, comprehensive knowledge of the ISM components including DMG in terms of their temperature and density, which will impact our understanding of galaxy evolution and star formation profoundly.