• Title/Summary/Keyword: Self-Assembly Monolayers(SAMs)

Search Result 28, Processing Time 0.027 seconds

Structural Control and Two-Dimensional Order of Organic Thiol Self-Assembled Monolayers on Au(111)

  • No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.26-26
    • /
    • 2011
  • Self-assembled monolayers (SAMs) prepared by sulfur-containing organic molecules on metal surfaces have drawn much attention for more than two decades because of their technological applications in wetting, chemical and biosensors, molecular recognition, nanolithography, and molecular electronics. In this talk, we will present self-assembly mechanism and two-dimensional (2D) structures of various organic thiol SAMs on Au(111), which are mainly demonstrated by molecular-scale scanning tunneling microscopy (STM) observation. In addition, we will provide some idea how to control 2D molecular arrangements of organic SAMs. For instance, the formation and surface structure of pentafluorobenzenethiols (PFBT) self-assembled monolayers (SAMs) on Au(111) formed from various experimental conditions were examined by means of STM. Although it is well known that PFBT molecules on metal surfaces do not form ordered SAMs, we clearly revealed for the first time that adsorption of PFBT on Au(111) at $75^{\circ}C$ for 2 h yields long-range, well-ordered self-assembled monolayers having a $(2{\times}5\sqrt{13})R30^{\circ}$ superlattice. Benzenethiols (BT) SAMs on gold usually have disordered phases, however, we have clearly demonstrated that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain BT SAMs with long-range ordered domains. Our results will provide new insight into controlling the structural order of BT or PFBT SAMs, which will be very useful in precisely tailoring the interface properties of metal surfaces in electronic devices.

  • PDF

Nano-identification for the Cleavage of Disulfide Bond during the Self-Assembly Processes of Unsymmetric Dialkyl Disulfides on Au(111)

  • Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.553-557
    • /
    • 2005
  • The formation of striped phases of unsymmetric hexyl octadecyl disulfide ($CH_3(CH_2)_5SS(CH_2)_{17}CH_3$, HOD) and 1-hydroxyundecyl octadecyl disulfide ($CH_3(CH_2)_{17}SS(CH_2)_{11}$OH, HUOD) on Au(111) and graphite has been investigated by scanning tunneling microscopy (STM) to understand the self-assembly processes of dialkyl disulfides. STM imaging clearly shows the formation of striped phases having corrugation periodicities that are nearly consistent with the molecular length of alkanethiolate moieties formed after the S-S bond cleavage of dialkyl disulfide on a gold surface. On the other hand, self-assembled monolayers (SAMs) of dialkyl disulfides on a graphite surface displayed long-range, well-ordered monolayers with one striped pattern that shows periodicity as a function of molecular length via nondissociative adsorption. From a nonoscopic viewpoint, we have clearly demonstrated that dialkyl disulfide SAMs on gold form via S-S bond cleavage of disulfide.

A Study on the Negative Differential Resistance in Dipyridinium Self-Assembled Monolayers Using STM

  • Lee Nam-Suk;Shin Hoon-Kyu;Kwon Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.111-114
    • /
    • 2005
  • Organic monolayers were fabricated onto Au(l l l) substrate by self-assembly method using dipyridinium. Also, organic single molecule in the organic monolayers was selected to measure the current-voltage (I-V) curves by using the ultrahigh vacuum scanning tunneling microscopy (UHV-STM). The organic molecule used in the experiment was dipyridinium dithioacetate, which contains thiol functional group and can be self-assembled easily onto Au(l l l) substrate. The concentration of dipyridinium dithioacetate for self-assembly procedure was I [mM/L]. To confirm the formation of self-assembled mono layers (SAMs), the differences of thickness of the self-assembled organic monolayers were observed by using an ellipsometer, and the morphology and I-V curves of the SAMs were investigated by using UHV-STM. The applied voltages were from -2 [V] to +2 [V], temperature was 300 [K]. The vacuum for measuring current of the organic single molecule was 6 $\times$ 10$^{-8}$ [Torr]. As a result, properties of the negative differential resistance (NDR) in constant voltage were found.

Study on Morphology Investigation and Charge-transfer Property of Self-assembled Viologen Monolayers (자기조립된 Viologen 단분자막의 표면이미지 관찰과 계면전하이동 특성 연구)

  • Park Sang-Hyun;Lee Dong-Yun;Park Jae-Chul;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.246-249
    • /
    • 2006
  • We fabricated self-assembled monolayers(SAMs) onto quartz crystal microbalance(QCM) using viologen, which has been widely used as electron acceptor and electron transfer mediator. We determined the time dependence on resonant frequency shift during self-assembly process and observed the morphology of self-assembled monolayers by STM and investigated the electrochemical behavior of SAMs by cyclic voltammetry. Electrochemical deposition of viologen was investigated using electrochemical quartz crystal microbalance(EQCM). The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redok reactions. The total frequency change was about 9.5 Hz, and 7.1 Hz. From the data, we could know the mass change was about 10.16 ng and 7.60 ng, respectively. Finally, the EQCM has been employed to monitor the electrochemically induced adsorption of self-assembled monolayers on Au surfaces.

Study on Morphology Investigation and Electron-Transfer Property of Self-Assembled Viologen Monolayers (자기조립된 Viologen 단분자막의 모폴로지 관찰과 전하이동 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.395-396
    • /
    • 2005
  • We fabricated self-assembled monolayers(SAMs) onto quartz crystal microbalance(QCM) using viologen, which has been widely used as electron acceptor and electron transfer mediator. We determined the time dependence to resonant frequency shift during self-assembly process and observed the morphology of self-assembled mono layers by STM and investigated the electrochemical behavior of SAMs by cyclic voltammetry. Electrochemical deposition of viologen was investigated using electrochemical quartz crystal microbalance(EQCM). The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redox reactions.

  • PDF

A Study on the Current-Voltage Characteristics of Self-Assembled Organic Molecules by using STM

  • Kim Seung-Un;Shin Hoon-Kyu;Kwon Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.115-118
    • /
    • 2005
  • Currently, molecular devices are reported utilizing active self-assembled monolayers (SAMs) containing the nitro group as the active component, which has active redox centers [1]. SAMs are ordered molecular structures formed by the adsorption of an active surfactant on a solid surface. The molecules will be spontaneously oriented toward the substrate surface and form an energetically favorable ordered layer. During this process, the surface-active head group of the molecule chemically reacts with and chemisorbs onto the substrate In this paper, the electrical properties of the 4'4- di(ethynylphenyl)-2'-nitro-1-benzenethiolate was confirmed. This material is well known as a conducting molecule having possible application to molecular level negative differential resistance (NDR) device. To deposit the self-assembly monolayers onto the gold electrode, the prefabricated Au(1 l l) substrates were immersed into 0.5[mM/l] self-assembly molecule in THF solution. Then, the electrical properties and surface morphologies of 4' 4-di(ethynylphenyl)-2' -nitro-1-benzenethiolate were measured by using the ultra-high vacuum scanning tunneling microscopy (UHV-STM).

Determination of the NDR and Electron Transport Properties of Self-Assembled Nitro-Benzene Monolayers Using UHV-STM

  • Lee Nam-Suk;Chang Jeong-Soo;Kwon Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.366-370
    • /
    • 2006
  • We investigated the negative differential resistance (NDR) property of self-assembled 4,4-di(ethynylphenyl)-2'-nitro-l-(thioacetyl)benzene ('nitro-benzene'), which has been well known as a conducting molecule [1], Self-assembly monolayers (SAMs) were prepared on Au (111), which had been thermally deposited onto pre-treated $(H_2SO_4: H_2O_2=3:1)$ Si, The Au substrate was exposed to a 1mM solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing of the sample, it was exposed to a $0.1{\mu}M$ solution of nitro-benzene in dimethylformamide (DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. Following the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2$, and finally blown dry with $N_2$. Under these conditions, we measured the electrical properties of SAMs using ultra high vacuum scanning tunneling microscopy (UHV-STM) and scanning tunneling spectroscopy (STS) [2]. As a result, we confirmed the properties of NDR in between the positive and negative region.

Optical and Electrochemical Property of Self-Assembled Monolayers Containing Viologen Derivative by EQCM Study (EQCM법을 이용한 자기조립된 Viologen 유도체의 광학적 특성 및 전기화학적 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1305-1306
    • /
    • 2006
  • A monolayer assembly of anthracene-viologen linked thiol ($AMVC_{8}SH$) was fabricated on a gold electrode by self-assembly method. Structural property of the self-assembled monolayers (SAMs) was carried out by optical and electrochemical method. Firstly, we investigated PL spectrum and UV/visible absorption for the optical properties in solution state. Secondly, we determined the characteristics of charge transfer in different electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). From the data, the PL spectrum and UV/visible absorption were observed and the well-defined shape peaks were nearly equal charges during redox reactions and existed to an excellent linear relationship between the scan rates and existed to currents. The mass change was determined during redox reaction. The mass change behavior of SAMs was not only governed by the mobility of the ion in the viologen but the valence of the ion in the electrolyte solution.

  • PDF

Comparative Study of Tetrahydrothiophene and Thiophene Self Assembled Monolayers on Au(111): Structure and Molecular Orientation

  • Ito, Eisuke;Hara, Masahiko;Kanai, Kaname;Ouchi, Yukio;Seki, Kazuhiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1755-1759
    • /
    • 2009
  • Surface structure and molecular orientation of self-assembled monolayers (SAMs) formed by the spontaneous adsorption of tetrahydrothiophene (THT) and thiophene (TP) on Au(111) were investigated by means of scanning tunneling microscopy (STM) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STM imaging revealed that THT SAMs have a commensurate (3 ${\times}\;2\sqrt[]{3}$) structure containing structural defects in ordered domains, whereas TP SAMs are composed of randomly adsorbed domains and paired molecular row domains that can be described as an incommensurate packing structure. The NEXAFS spectroscopy study showed that the average tilt angle of the aliphatic THT ring and $\pi$-conjugated TP ring in the SAMs were calculated to be about $30^o\;and\;40^o$, respectively, from the surface normal. It was also observed that the $\pi$* transition peak in the NEXAFS spectrum of the TP SAMs is very weak, suggesting that a strong interaction between $\pi$-electrons and the Au surface arises during the self-assembly of TP molecules. In this study, we have clearly demonstrated that the surface structure and adsorption orientation of organic SAMs on Au(111) are strongly influenced by whether the cyclic ring is saturated or unsaturated.

Study on Electrical Characteristic of Self-assembled Nitro Molecule Onto Au(111) Substrate by Using STM/STS (STM/STS에 의한 Au(111) 표면에 자기조립된 니트로분자의 전기적 특성 측정)

  • Lee Nam-Suk;Kwon Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.16-19
    • /
    • 2006
  • The characteristic of negative differential resistance(NDR) is decreased current when the applied voltage is increased. The NDR is potentially very useful in molecular electronics device schemes. Here, we investigated the NDR characteristic of self-assembled 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto $pre-treatment(H_2SO_4:H_2O_2=3:1)$ Si. The Au substrate was exposed to a 1 mM/1 solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a 0.1 ${\mu}M/l$ solution of 4.4'-di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2,$ and finally blown dry with N_2. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -2 V to +2 V with 298 K temperature. The vacuum condition was $6{\time}10^{-8}$ Torr. As a result, we found the NDR voltage of the 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate were $-1.61{\pm}0.26$ V(negative region) and $1.84{\pm}0.33$ V(positive region). respectively.