• Title/Summary/Keyword: Self-Assembled Monolayer

Search Result 260, Processing Time 0.032 seconds

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • Seo, So-Hyeon;Lee, Jeong-Hyeon;Bang, Gyeong-Suk;Lee, Hyo-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF

Investigation of the Scanning Tunneling Microscopy Image, the Stacking Pattern and the Bias-voltage Dependent Structural Instability of 2,2'-Bipyridine Molecules Adsorbed on Au(111) in Terms of Electronic Structure Calculations

  • Suh, Young-Sun;Park, Sung-Soo;Kang, Jin-Hee;Hwang, Yong-Gyoo;Jung, D.;Kim, Dong-Hee;Lee, Kee-Hag;Whangbo, M.-H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.438-444
    • /
    • 2008
  • A self-assembled monolayer of 2,2'-bipyridine (22BPY) molecules on Au(111) underwent a structural phase transition when the polarity of a bias voltage was switched in scanning tunneling microscopy (STM) experiments. The nature of two bright spots representing each 22BPY molecule on Au(111) in the high-resolution STM images was identified by calculating the partial density plots for a monolayer of 22BPY molecules adsorbed on Au(111) using tight-binding electronic structure calculations. The stacking pattern of the chains of 22BPY molecules on Au(111) was explained by examining the intermolecular interactions between the 22BPY molecules based on first principles electronic structure calculations for a 22BPY dimer, (22BPY)2. The structural instability of the 22BPY molecule arrangement caused by a change in the bias voltage switch was investigated by estimating the adsorbate-surface interaction energy using a point-charge approximation for Au(111).

Electrochemical characterization of 3-mercaptopropionic acid self-assembled monolayer for urea sensor (요소센서를 위한 3-mercaptopropionic acid 자기조립 단일층의 전기화학적 특성 분석)

  • Yun, Dong-Hwa;Song, Min-Jung;Kim, Jong-Hoon;Kang, Moon-Sik;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1579-1581
    • /
    • 2004
  • 바이오센서는 효소(enzyme), 생분자(biomolecule), 항체(antibody), 세포(cell) 등의 biological agent를 인지 물질(recognition material)로 하여 측정하고자하는 분석 대상(analyte)과 높은 선택성으로 반응을 일으키게 하여 그 결과를 기존의 물리, 화학센서로 감지 해내는 방식이므로 기존의 의료용 화학센서를 대체하는 추세이다. 바이오센서가 기존의 센서와 구별되는 점은 생물질의 선택적인 반응 및 결합을 이용하는 것이므로 바이오센서의 실용화에 있어서 가장 중요한 것은 생체 반응 물질의 고정화 기술과 고정화막의 선택이라 할 수 있다. 일정전압법을 이용한 요소센서는 많이 연구되어 오고 있으나 낮은 농도에서의 감도저하에 따른 단점으로 상용화에 이르지 못하고 있다. 본 논문은 요소센서의 이용하기 위한 고정화막으로 3-mercaptopropionic acid 자기조립 단인층의 전기화학적 특성을 고창하였다. 자기조립 단일층은 직접적인 전자전달로 인하여 낮은 요소 농도에서 뛰어난 강도와 빠른 반응 시간을 보였으며, 특히 다공질 실라콘을 기질로 사용한 경우 평면 전극 보다 약 3배의 감도 증가 효과를 가져왔다. 자기조립 단일층의 표면 분석은 X-ray photoelectron spectroscopy(XPS)를 이용하였다.

  • PDF

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

Effect of polymer substrates on nano scale hot embossing (나노 사이즈 hot embossing 공정시 폴리머의 영향)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

Patterning of conducting polymer at micron- scale using a selective surface treatment

  • Lee, Kwang-Ho;Kim, Sang-Mook;Kim, Ki-Seok;Song, Sun-Sik;Kim, Eun-Uk;Jung, Hee-Soo;Kim, Jin-Ju;Jung, Gun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.834-836
    • /
    • 2008
  • We demonstrated micro-scale conducting polymer patterning based on a selective surface treatment. A substrate with a patterned photoresist was immersed into OTS (Octadecyltrichlosilnae) solution. The protected substrate areas were hydrophilic after removing the PR resist, where a conducting polymer solution was coated selectively by spin-coating method.

  • PDF

Fabrication of the solution-processible OLED/OTFT by the gravure printing/contact transfer: role of the surface treatment

  • Na, Jung-Hoon;Kim, Sung-Hyun;Kang, Nam-Su;Yu, Jae-Woong;Im, Chan;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1638-1641
    • /
    • 2008
  • We have investigated the effectiveness of a gravure printing method for the fabrication of organic light-emitting diode (OLED) and Organic Thin Film Transistor (OTFT). Printing of the organic layers was performed with a small-scale gravure coating machine, while the metallic layers were vacuum-evaporated. Devices with gravure-printed layers are at least comparable with the spin-coated devices. Effects of the solvent formulation and surface energy mismatch between the organic layer materials on the printed patterns and device performance were discussed. We will present the initial design and experimental data of OTFT fabricated by roll-type soft contact transfer process.

  • PDF

Experimental Study of Dynamic Behavior of a Water Droplet on Diverse Wrinkling Surfaces (마이크로 표면주름 구조에 따른 물방울 동적거동에 관한 실험적 연구)

  • Baek, Dae Hyeon;Zhao, Zhijun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.577-585
    • /
    • 2015
  • We fabricated multi-scale such as macro-, micro-, and multi-scale wrinkles by using repetitive volume dividing (RVD) method and thermal curing process. Also wrinkle surface was modified with coating of a self-assembled monolayer (SAM). We measured the contact angle of each wrinkled surface, and observed the behavior of droplets on sloping surface. Through experimental study, we found out that the contact angle was much higher in case of multi-scale and SAM coated wrinkles. And micro-scale wrinkle showed a high contact angle comparing with that of macro-scale wrinkle. Dynamic behaviors of a water droplet like sliding velocity on diverse wrinkled surfaces were dependent on their static contact angles. These results showed that hydro-dynamic characteristics were changed depending on the wrinkle structure and the material forming the wrinkle. These dynamic characteristics can be utilized in bio-chip, microfluidics, and many others in order to control easily chemical reactivity.

A study on mechanical characterization of nano-thick films fabricated by transfer assembly technique (이송조립기술로 제조된 나노 박막의 기계적인 특성 평가에 관한 연구)

  • Choi, Hyun-Ju;Kim, Jae-Hyun;Lee, Sang-Joo;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.30-34
    • /
    • 2008
  • The transfer assembly (or transfer printing) technique is a promising method for fabricating multi-scale structures on various substrates including semiconductors and polymers, and has been applied to fabrication of flexible devices with superior performance to conventional organic flexible devices. The mechanical behaviors of the structures fabricated by the transfer assembly is a very important information for design and reliability evaluation purpose, but the measurement of the behaviors is difficult since their critical-dimensions are very tiny. In this study, Au films with nano-scale thickness were fabricated on a silicon substrate and their mechanical properties were measured using micro-tensile test. The Au films on the silicon substrate were then transferred to a PDMS substrate using the transfer assembly technique. Self-assembled monolayer (SAM) with a thiol group was used to enhance the transfer of Au films, and the mechanical behaviors were characterized using wrinkle-based test. The test results from micro-tensile and wrinkle-based test are compared to each other, and their implication to the transfer assembly technique is discussed.

  • PDF

Underwater Stability of Surface Chemistry Modified Superhydrophobic WOx Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.357.1-357.1
    • /
    • 2014
  • Superhydrophobic WOx nanowire (NW) arrays were fabricated using a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting WOx NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic WOx NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of WOx NWs arrays was conducted by changing hydrostatic pressure and surface energy of WOx NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of WOx NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF