• 제목/요약/키워드: Self tuning PI controller

검색결과 51건 처리시간 0.048초

BIPV 냉각시스템을 위한 자기동조 PI 온도제어 (Self Tuning PI Temperature Control for BIPV Cooling System)

  • 김도연;고재섭;최정식;정병진;백정우;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1080_1081
    • /
    • 2009
  • This paper proposes a cooling system using self tuning PI controller for improving the output of BIPV module. The temperature characteristics in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind and insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the nominal operating cell temperature(NOCT) which is able to make the maximum output. The paper proposes the cooling system using thermoelectron by self tuning PI controller so as to solve such problems. The thermoelectron control of self tuning PI controller can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron

  • PDF

신경회로망을 이용한 IPMSM 드라이브의 자기동조 PI 제어기 (Self Tunning PI Controller of IPMSM Drive using Neural Network)

  • 남수명;이홍균;고재섭;최정식;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1453-1455
    • /
    • 2005
  • This paper presents self tuning PI controller of IPMSM drive using neural network. Self tuning PI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

BLDC 모터 구동을 위한 신경회로망 PI파라미터 자기 동조 시뮬레이터 (Neural Network PI Parameters Self-tuning Simulator for BLDC Motor operation)

  • 배은경;권중동;김태우;김대균;전지용;이승환;이훈구;김용주;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.759-760
    • /
    • 2006
  • In this paper proposed to Neural network PI self-tuning direct controller using Error back propagation algorithm. Proposed controller applies to speed controller and current controller. Also, this built up the interface environment to drive it simply and exactly in any kind of reference, environment fluent and parameter transaction of BLDC motor. Neural network PI self-tuning simulator using Visual C++ and Matlab Simulation is organized to construct this environment. Built-u-p interface has it's own purpose that even the user who don't have the accurate knowledge of neural network can embody operation characteristic rapidly and easily.

  • PDF

A Self-Tuning PI Control System Design for the Flatness of Hot Strip in Finishing Mill Processes

  • Park, Jeong-Ju;Hong, Wan-Kee;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.379-387
    • /
    • 2004
  • A novel flatness sensing system which is called the Flatness Sensing Inter-stand Looper(FlatSIL) system is suggested and a self-tuning PI control system using the FlatSIL is designed for improving the flatness of hot strip in finishing mill processes. The FlatSIL system measures the tension along the direction of the strip width by using segmented rolls, and the tension profile is approximated through the tension of each segmented roll. The flatness control system is operated by using the tension profile. The proposed flatness control system as far as the tension profile-measuring device works for the full strip length during the strip rolling in finishing mills. The generalized minimum variance self-tuning (GMV S-T) PI control method is applied to control the flatness of hot strip which has a design parameter as weighting factor for updating the PI gains. Optimizing the design parameter in the GMV S-T PI controller, the Robbins-Monro algorithm is used. It is shown by the computer simulation and experiment that the proposed GMV S-T PI flatness control system has better performance than the fixed PI flatness control system.

온라인 자기동조 퍼지 PID 제어기 개발 (The development of an on-line self-tuning fuzzy PID controller)

  • 임형순;한진욱;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.704-707
    • /
    • 1997
  • In this paper, we present a fuzzy logic based tuner for continuous on-line tuning of PID controllers. The essential idea of the scheme is to parameterize a Ziegler-Nichols-like tuning formula by a singler parameter .alpha., then to use an on line fuzzy logic to self-tune the parameter. The adaptive scaling makes the controller robust against large variations in parametric and dynamics uncertainties in the plant model. New self-tuning controller has the ability to decide when to use PI or PID control by extracting process dynamics from relay experiments. These scheme lead to improved performance of the transient and steady state behavior of the closed loop system, including processes with nonminimum phase processes.

  • PDF

벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법 (A Self-Tuning Fuzzy Speed Control Method for an Induction Motor)

  • 김동신;한우용;이창구;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

부하변동을 보상한 유도전동기 신경망 속도 제어기 (Load variation Compensated Neural Network Speed Controller for Induction Motor Drives)

  • 오원석;조규민;김희준;신태현;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1137-1139
    • /
    • 2002
  • In this paper, recurrent artificial neural network (RNN) based self tuning speed controller is proposed for the high performance drives of induction motor. RNN provides a nonlinear modeling of motor drive system and could give the information of the load variation, system noise and parameter variation of induction motor to the controller through the on-line estimated weights of corresponding RNN. Thus, proposed self tuning controller can change gains of the controller according to system conditions. The gain is composed with the weights of RNN. For the on-line estimation of the weights of RNN, extended kalman filter (EKF) algorithm is used. Self tuning controller that is adequate for the speed control of induction motor is designed. The availability of the proposed controller is verified through the MATLAB simulation with the comparison of conventional PI controller.

  • PDF

신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기 (STPI Controller of IPMSM Drive using Neural Network)

  • 고재섭;최정식;정동화
    • 전자공학회논문지SC
    • /
    • 제44권2호
    • /
    • pp.24-31
    • /
    • 2007
  • 본 논문은 신경회로망을 이용한 IPMSM 드라이브의 자기동조 PI 제어기를 제시한다. 일반적으로 수치제어장치 처리는 고정된 이득값을 가진 PI 제어기를 이용한다. 고정된 이득값을 가진 PI 제어기는 어떠한 환경에서는 양호하게 동작할 수 도 있다. 고정된 이득값을 가진 PI 제어기의 강인성을 증가시키기 위하여 신경회로망을 기반으로한 새로운 방법인 STPI 제어기를 제시하였다. STPI 제어기는 속도, 부하토크, 관성과 같은 파라비터가 갑자기 변화하였을 때 오버슈트, 상승시간, 안정화시간을 최소화한다. 또한 본 논문에서는 신경회로망을 이용하여 속도를 제어하고 ANN 제어기를 이용하여 속도를 추정한다. 신경회로망의 역전파 알고리즘 기법은 전동기 속도의 실시간 추정을 제시한다. IPMSM의 속도제어의 결과는 이득값 동조의 효용성을 보여준다. 그리고 STPI 제어기는 고정된 이득값을 가진 PI 제어기에 비하여 강인성 광범위한 운전영역 부하 왜란등에 대하여 우수한 성능을 나타낸다.

자기 동조 제어기를 이용한 압연용 직류 전동기 구동 시스템의 속도 제어기 설계 (Design of Speed Controller of Rolling Mill DC Motor Drive System Using Self-Tuning Regulator)

  • 지준근;송승호;설승기;박민호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1231-1234
    • /
    • 1992
  • In this paper a self-tuning control algorithm has been utilized to control speed of a rolling mill DC drive system. Inner current control loop is composed of predictive current controller and the outer speed control loop is composed of the self-tuning PI or IP controller. Computer simulation results reveal that the adaptive control algorithm using self-tuning control is capable of following the typical set point variations required for a rolling mill in conjunction with load torque variations on the shaft of the drive.

  • PDF

유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발 (Development of Self Tuning and Adaptive Fuzzy Controller to control of Induction Motor)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.33-42
    • /
    • 2010
  • 벡터제어를 적용한 유도전동기 드라이브는 고성능 제어를 위하여 산업 적용분야에 광범위하게 사용되고 있다. 그러나 유도전동기의 모델은 비선형이고 복잡하기 때문에 포화, 온도변화, 외란 및 파라미터 변동등에 의해 성능 및 신뢰성이 저하된다. 이러한 가변속 드라이브를 제어하기 위하여 종래의 PI와 같은 제어기들이 일반적으로 사용되어졌다. 이러한 제어기들은 이상적인 벡터제어 상태에서도 광범위한 동작영역에서 양호한 성능을 나타내는데 한계를 가지고 있다. 본 논문은 퍼지제어, 신경회로망, 적응 퍼지제어로 구성된 FNN(Fuzzy-Neural Network)-PI 제어기 기반 자기동조 PI 제어기와 ANN을 이용한 속도추정을 제시한다. FNN-PI, AFC, ANN 제어기를 이용한 제어 알고리즘은 유도전동기 드라이브 시스템에 적용하여 그 결과를 분석하고 제어기의 효용성을 입증한다.