Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.134-138
/
1998
Unification of Kohone SOM(Self-Organizing Maps) neural network with the branch-and-bound algorithm is presented for clustering large set of patterns. The branch-and-bound search technique is employed for designing coarse neural network learning paradaim. Those unification can be use for clustering or calssfication of large patterns. For classfication purposes further usefulness is possible, since only two clusters exists in the SOM neural network of each nodes. The result of experiments show the fast learning time, the fast recognition time and the compactness of clustering.
웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.
패턴 인식 분야에서 다중 분류기 시스템은 여러 분류기의 결과들을 조합하여 전체 성능을 항상 시키는 시스템이다. 다중 분류기를 사용함으로써 단일 분류기 보다 더 나은 결과를 얻을 수 있음은 이미 널리 알려진 사실이다. 서로 다른 구조를 갖는 분류기들은 상호 보완적인 정보를 제공하기 때문에 각 분류기마다 입력 공간에 대해서 지역적으로 좋은 성능을 갖는다. 본 논문에서는 지역적으로 가장 좋은 성능을 보이는 분류기 선택 방법을 제안한다. 제안하는 방법은 주어진 입력 공간에 비해 각 분류기들을 학습하는 과정에서 자기조직화지도를 생성하고 각 노드별로 평가함으로써 입력이 주어지면, 해당 노드에서 가장 성능이 좋은 분류기를 선택하여 전체 성능을 향상시키는 시스템이다.
Human posture recognition is an attractive and challenging topic in computer vision due to its promising applications in the areas of personal health care, environmental awareness, human-computer-interaction and surveillance systems. Human posture recognition in video sequences consists of two stages: the first stage is training and evaluation and the second is deployment. In the first stage, the system is trained and evaluated using datasets of human postures to ‘teach’ the system to classify human postures for any future inputs. When the training and evaluation process is deemed satisfactory as measured by recognition rates, the trained system is then deployed to recognize human postures in any input video sequence. Different classifiers were used in the training such as Multilayer Perceptron Feedforward Neural networks, Self-Organizing Maps, Fuzzy C Means and K Means. Results show that supervised learning classifiers tend to perform better than unsupervised classifiers for the case of human posture recognition.
MODROC 기법이 대표적인 일반화된 기계-셀 형성 기법은 부품 생산비용, 부품가공시간, 공정순서, 로트 크기 등을 고려하여, 기계-셀을 형성함에 있어, 보다 현실적인 접근을 추구한 것이다. 그러나, 수리적 문제 해결의 한계로 인해 현실 접근성이 제한되며, 신경망을 이용한 기존의 기법들 역시 수리적 제한환경을 설정한 것이어서 현실적인 응용가능성이 떨어지고 있다. 본 논문에서는 공정순서와 공장배치를 고려하여 기계-셀의 효율적인 형성을 꾀하였다. 신경망 모델인 자기조직화 형성기법을 응용하였으며, 공장 작업영역과 기계-셀의 위치가 주어짐에 따라 공정순서를 고려하여 물류의 이동을 최소화하는 기계-셀의 형성 방법을 꾀하였다. 본 기계-셀 형성 방법은 기존의 방식에 비해 짧은 시간에 기계-셀을 형성할 수 있으며, 그에 따른 부품군의 형성은 공정을 고려하여 총 물류량을 감소시키는 방향으로 결정되는 장점을 갖고 있다. 또한, 다변화되는 환경에 대한 적응성과 예외적 요소(exceptional element)에 대한 셀 형성 및 처리가 매우 유연하게 나타내어 진다. 본 연구에서는 공정 간에 기계의 중복이 있는 경우의 기계-셀 형성 문제에 대해 제한된 기법을 적용하였다.
We propose an efficient face recognition system for controllinng the access to the restricted zone using both the face region detectors based on facial symmetry and the extended self-organizing maps (ESOM) which have sensory synapses and descriptive synapses. Based on the visual cues of the facial symmetry, we apply horizontal and vertical projections on elliptic regions detected by GHT(generalized hough transform) to identify all the face regions from the complex background.And we propose an ESOM which can exploit principal components and imitate an elastic similarity matching, to authenticate faces of the enlisted member. In order to cope with changes of facial experession or glasses wearing, etc, the facial descriptions of each member at the time of authentication are simultaneously updated on the discriptive synapses online using the incremental learning of the proposed ESOM. Experimental results prove the feasibility of our approach.
When vector quantization is used in low rate image coding (e.g., R<0.5), the primary problem is the tremendous computational complexity which is required to search the whole codebook to find the closest codevector to an input vector. Since the number of code vectors in a vector quantizer is given by an exponential function of the dimension. i.e., L=2$^{nR}$ where Rn. To alleviate this problem, a multiple shell structure of hypercube feature maps (MSSHFM) is proposed. A binary HFM of k-dimension is composed of nodes at hypercube vertices and a multiple shell architecture is constructed by surrounding the k-dimensional hfm with a (k+1)-dimensional HFM. Such a multiple shell construction of nodes inherently has a complete tree structure in it and an efficient partial search scheme can be applied with drastically reduced computational complexity, computer simulations of still image coding were conducted and the validity of the proposed method has been verified.
It is important to minimize the number of disk accesses which is necessary to transfer data in disk into main memory when processing transactions in physical database design. A vertical file partitioning method is used to reduce the number of disk accesses by partitioning relations vertically and accessing only necessay fragments. In this paper, SOFM(Self-Organizing Feature Maps) network is used to solve vertical partitioning problems. This paper shows that SOFM network is efficient in solving vertical partitioning problem by comparing approximate solution of SOFM network with optimal solution of N-ary branch and bound method. And this paper presents a heuristic algorithm for allocating duplicate attributes to vertically partitioned fragments. As branch and bound method requires particularly much computing time to solve large-sized problems, it is shown that SOFM network is able to overcome this limitation of branch and bound method and solve large-sized problems efficiently in a short time.
본 연구에서는 낙동강 본류의 진동과 적포교, 남강의 거룡강, 대산, 정암 수위표의 관측된 2015년부터 2016년 2년간 수위자료를 이용하여, Self-Organizing Maps(SOM)과 LOcally WEighted Scatter plot Smoother(Lowess) 기법으로 패턴과 추세를 분석하였다. SOM 분석 결과, 낙동강 본 류의 진동과 적포교, 남강의 거룡강, 대산은 동일한 패턴과 추세를 나타냈다. 수위의 범위도, SOM 분석에서 진동 최소 EL. 4.41m, 최대 EL. 5.01m 범위, 적포교 최소 EL. 4.56m, 최대 EL. 5.38m 범위, 거룡강 최소 EL. 4.53m, 최대 EL. 5.18m 범위, 대산 최소 EL. 4.57m, 최대 EL. 5.35m 범위로 큰 차이가 발생하지 않았다. 거룡강과 대산 수위 관측지점은 낙동강 본류의 배수위 영향을 받는 것을 알 수 있었으며, 두 지점의 수위 관측 목적에 따라 상류로 지점 변경이 필요 할 수도 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.