• Title/Summary/Keyword: Self Organizing Maps

Search Result 97, Processing Time 0.029 seconds

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Detecting cell cycle-regulated genes using Self-Organizing Maps with statistical Phase Synchronization (SOMPS) algorithm

  • Kim, Chang Sik;Tcha, Hong Joon;Bae, Cheol-Soo;Kim, Moon-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.39-50
    • /
    • 2008
  • Developing computational methods for identifying cell cycle-regulated genes has been one of important topics in systems biology. Most of previous methods consider the periodic characteristics of expression signals to identify the cell cycle-regulated genes. However, we assume that cell cycle-regulated genes are relatively active having relatively many interactions with each other based on the underlying cellular network. Thus, we are motivated to apply the theory of multivariate phase synchronization to the cell cycle expression analysis. In this study, we apply the method known as "Self-Organizing Maps with statistical Phase Synchronization (SOMPS)", which is the combination of self-organizing map and multivariate phase synchronization, producing several subsets of genes that are expected to have interactions with each other in their subset (Kim, 2008). Our evaluation experiments show that the SOMPS algorithm is able to detect cell cycle-regulated genes as much as one of recently reported method that performs better than most existing methods.

  • PDF

Rethinking of Self-Organizing Maps for Market Segmentation in Customer Relationship Management (고객관계관리의 시장 세분화를 위한 Self-Organizing Maps 재고찰)

  • Bang, Joung-Hae;Hamel, Lutz;Ioerger, Brian
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.17-34
    • /
    • 2007
  • Organizations have realized the importance of CRM. To obtain the maximum possible lifetime value from a customer base, it is critical that customer data is analyzed to understand patterns of customer response. As customer databases assume gigantic proportions due to Internet and e-commerce activity, data-mining-based market segmentation becomes crucial for understanding customers. Here we raise a question and some issues of using single SOM approach for clustering while proposing multiple self-organizing maps approach. This methodology exploits additional themes on the attributes that characterize customers in a typical CRM system. Since this additional theme is usually ignored by traditional market segmentation techniques we here suggest careful application of SOM for market segmentation.

  • PDF

Optimal Placement of Sensor Nodes with 2.4GHz Wireless Channel Characteristics (2.4GHz 무선 채널 특성을 가진 센서 노드의 최적 배치)

  • Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • In this paper, we propose an optimal placement of sensor nodes with 2.4GHz wireless channel characteristics. The proposed method determines optimal transmission range based on log-normal path loss model, and optimal number of sensor nodes calculating the density of sensor nodes. For the lossless data transmission, we search the optimal locations with self-organizing feature maps(SOM) using transmission range, and number of sensor nodes. We demonstrate that optimal transmission range is 20m, and optimal number of sensor nodes is 8. We performed simulations on the searching for optimal locations and confirmed the link condition of sensor nodes.

A Clustering Algorithm using Self-Organizing Feature Maps (자기 조직화 신경망을 이용한 클러스터링 알고리듬)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.257-264
    • /
    • 2005
  • This paper suggests a heuristic algorithm for the clustering problem. Clustering involves grouping similar objects into a cluster. Clustering is used in a wide variety of fields including data mining, marketing, and biology. Until now there are a lot of approaches using Self-Organizing Feature Maps(SOFMs). But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of k output-layer nodes, if they want to make k clusters. This approach has problems to classify elaboratively. This paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We can find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. We use the well known IRIS data as an experimental data. Unsupervised clustering of IRIS data typically results in 15 - 17 clustering error. However, the proposed algorithm has only six clustering errors.

Two-phase Machine-Part Group Formation Algorithm Based on Self-Organizing Maps (자기조직화 신경망에 근거한 2단계 기계-부품 그룹형성 알고리듬)

  • Lee, Jong-Sub;Jeon, Yong-Deok;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.360-367
    • /
    • 2002
  • The machine-part group formation is to group the sets of parts having similar processing requirements into part families, and the sets of machines needed to process a particular part family into machine cells. The purpose of this study is to develop a two-phase machine-part group formation algorithm based on Self-Organizing Maps (SOM). In phase I, it forms machine cells from the machine-part incidence matrix by means of SOM whose output layer is one-dimension and the number of output nodes is the twice as many as the number of input nodes in order to spread out the input vectors. In phase II, it generates part families which are assigned to machine cells by means of machine ratio related with processing part and it gives machine-part group formation. The proposed algorithm performs remarkably well in comparison with many well-known algorithms for the machine-part group formation problems.

A Study on Analysis of Cases of Application of Emotion Architecture (Emotion Architecture 적용 사례 분석에 관한 연구)

  • 윤호창;오정석;전현주
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.447-453
    • /
    • 2003
  • Emotion Technology is used in many field such as computer A.I., graphics, robot, and interaction with agent. We focus on the theory, the technology and the features in emotion application. Firstly in the field of theory, there are psychological approach, behavior-based approach, action-selection approach. Secondly in the field of implementation technologies use the learning algorithm, self-organizing map of neural network and fuzzy cognition maps. Thirdly in the field of application, there are software agent, agent robot and entrainment robot. In this paper, we research the case of application and analyze emotion architecture.

  • PDF

A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps (자기 조직화 맵 기반 유사화상 검색의 고속화 수법)

  • Oh, Kun-Seok;Yang, Sung-Ki;Bae, Sang-Hyun;Kim, Pan-Koo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.515-522
    • /
    • 2001
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Map(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented about k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

  • PDF

The Design of Self-Organizing Map Using Pseudo Gaussian Function Network

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.6-42
    • /
    • 2002
  • Kohonen's self organizing feature map (SOFM) converts arbitrary dimensional patterns into one or two dimensional arrays of nodes. Among the many competitive learning algorithms, SOFM proposed by Kohonen is considered to be powerful in the sense that it not only clusters the input pattern adaptively but also organize the output node topologically. SOFM is usually used for a preprocessor or cluster. It can perform dimensional reduction of input patterns and obtain a topology-preserving map that preserves neighborhood relations of the input patterns. The traditional SOFM algorithm[1] is a competitive learning neural network that maps inputs to discrete points that are called nodes on a lattice...

  • PDF

Machine-Part Grouping Formation Using Grid Computing (그리드 컴퓨팅을 이용한 기계-부품 그룹 형성)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2004
  • The machine-part group formation is to group the sets of parts having similar processing requirements into part families, and the sets of machines needed to process a particular part family into machine cells using grid computing. It forms machine cells from the machine-part incidence matrix by means of Self-Organizing Maps(SOM) whose output layer is one-dimension and the number of output nodes is the twice as many as the number of input nodes in order to spread out the machine vectors. It generates machine-part group which are assigned to machine cells by means of the number of bottleneck machine with processing part. The proposed algorithm was tested on well-known machine-part grouping problems. The results of this computational study demonstrate the superiority of the proposed algorithm.