• Title/Summary/Keyword: Self Organizing Map

Search Result 425, Processing Time 0.03 seconds

Activity Recognition based on Accelerometer using Self Organizing Maps and Hidden Markov Model (자기 구성 지도와 은닉 마르코프 모델을 이용한 가속도 센서 기반 행동 인식)

  • Hwang, Keum-Sung;Cho, Sung-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.245-250
    • /
    • 2008
  • 최근 동작 및 행동 인식에 대한 연구가 활발하다. 특히, 센서가 소형화되고 저렴해지면서 그 활용을 위한 관심이 증가하고 있다. 기존의 많은 행동 인식 연구에서 사용되어 온 정적 분류 기술 기반 동작 인식 방법은 연속적인 데이터 분류 기술에 비해 유연성 및 활용성이 부족할 수 있다. 본 논문에서는 연속적인 데이터의 패턴 분류 및 인식에 효과적인 확률적 추론 기법인 은닉 마르코프 모델(Hidden Markov Model)과 사전 지식 없이도 자동 학습이 가능하며 의미 깊은 궤적 패턴을 클러스터링하고 효과적인 양자화가 가능한 자기구성지도(Self Organizing Map)를 이용한 동작 인식 기술을 소개한다. 또한, 그 유용성을 입증하기 위해 실제 가속도 센서를 이용하여 다양한 동작에 대한 데이터를 수집하고 분류 성능을 분석 및 평가한다. 실험에서는 실제 가속도 센서를 통해 수집된 숫자를 그리는 동작의 성능 평가 결과를 보이고, 행동 인식기 별 성능과 전체 인식기별 성능을 비교한다.

  • PDF

A Codebook Design for Vector Quantization Using a Neural Network (신경망을 이용한 벡터 양자화의 코드북 설계)

  • 주상현;원치선;신재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.276-283
    • /
    • 1994
  • Using a neural network for vector quantization, we can expect to have better codebook design algorithm for its adaptive process. Also, the designed codebook puts the codewords in order by its self-organizing characteristics, which makes it possible to partially search the codebook for real time process. To exploit these features of the neural network, in this paper, we propose a new codebook design algorithm that modified the KSFM(Kohonen`s Self-organizing Feature Map) and then combines the K-means algorithm. Experimental results show the performance improvment and the ability of the partical seach of the codebook for the real time process.

  • PDF

Hybrid Self Organizing Map using Monte Carlo Computing

  • Jun Sung-Hae;Park Min-Jae;Oh Kyung-Whan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

A New Speech Recognition Model : Dynamically Localized Self-organizing Map Model (새로운 음성 인식 모델 : 동적 국부 자기 조직 지도 모델)

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.20-24
    • /
    • 1994
  • A new speech recognition model, DLSMM(Dynamically Localized Self-organizing Map Model) and its effective training algorithm are proposed in this paper. In DLSMM, temporal and spatial distortions of speech are efficiently normalized by dynamic programming technique and localized self-organizing maps, respectively. Experiments on Korean digits recognition have been carried out. DLSMM has smaller Experiments on Korean digits recognition have been carried out. DLSMM has smaller connections than predictive neural network models, but it has scored a little high recognition rate.

  • PDF

Development of Data Mining System for Ship Design using Combined Genetic Programming with Self Organizing Map (유전적 프로그래밍과 SOM을 결합한 개선된 선박 설계용 데이터 마이닝 시스템 개발)

  • Lee, Kyung-Ho;Park, Jong-Hoon;Han, Young-Soo;Choi, Si-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.382-389
    • /
    • 2009
  • Recently, knowledge management has been required in companies as a tool of competitiveness. Companies have constructed Enterprise Resource Planning(ERP) system in order to manage huge knowledge. But, it is not easy to formalize knowledge in organization. We focused on data mining system by genetic programming(GP). Data mining system by genetic programming can be useful tools to derive and extract the necessary information and knowledge from the huge accumulated data. However when we don't have enough amounts of data to perform the learning process of genetic programming, we have to reduce input parameter(s) or increase number of learning or training data. In this study, an enhanced data mining method combining Genetic Programming with Self organizing map, that reduces the number of input parameters, is suggested. Experiment results through a prototype implementation are also discussed.

Reinforcement Learning Control using Self-Organizing Map and Multi-layer Feed-Forward Neural Network

  • Lee, Jae-Kang;Kim, Il-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.142-145
    • /
    • 2003
  • Many control applications using Neural Network need a priori information about the objective system. But it is impossible to get exact information about the objective system in real world. To solve this problem, several control methods were proposed. Reinforcement learning control using neural network is one of them. Basically reinforcement learning control doesn't need a priori information of objective system. This method uses reinforcement signal from interaction of objective system and environment and observable states of objective system as input data. But many methods take too much time to apply to real-world. So we focus on faster learning to apply reinforcement learning control to real-world. Two data types are used for reinforcement learning. One is reinforcement signal data. It has only two fixed scalar values that are assigned for each success and fail state. The other is observable state data. There are infinitive states in real-world system. So the number of observable state data is also infinitive. This requires too much learning time for applying to real-world. So we try to reduce the number of observable states by classification of states with Self-Organizing Map. We also use neural dynamic programming for controller design. An inverted pendulum on the cart system is simulated. Failure signal is used for reinforcement signal. The failure signal occurs when the pendulum angle or cart position deviate from the defined control range. The control objective is to maintain the balanced pole and centered cart. And four states that is, position and velocity of cart, angle and angular velocity of pole are used for state signal. Learning controller is composed of serial connection of Self-Organizing Map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

An Evaluative Study on the Content-based Trademark Image Retrieval System Based on Self Organizing Map(SOM) Algorithm (Self Organizing Map(SOM) 알고리즘을 이용한 상표의 내용기반 이미지검색 성능평가에 관한 연구)

  • Paik, Woo-Jin;Lee, Jae-Joon;Shin, Min-Ki;Lee, Eui-Gun;Ham, Eun-Mi;Shin, Moon-Sun
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.3
    • /
    • pp.321-341
    • /
    • 2007
  • It will be possible to prevent the infringement of the trademarks and the insueing disputes regarding the originality of the trademarks by using an efficient content-based trademark image retrieval system. In this paper, we describe a content-based image retrieval system using the Self Organizing Map(SOM) algorithm. The SOM algorithm utilizes the visual features, which were derived from the gray histogram representation of the images. In addition, we made the objective effectiveness evaluation possible by coming up with a quantitative measure to gauge the effectiveness of the content-based image retrieval system.

Fault Detection and Diagnosis for EVA Production Processes Using AE-SOM (AE-SOM을 이용한 EVA 생산 공정 이상 검출 및 진단)

  • Park, Byeong Eon;Ji, Yumi;Sim, Ye Seul;Lee, Kyu-Hwang;Lee, Ho Kyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.408-415
    • /
    • 2020
  • In this study, the AE-SOM method, which combines auto-encoder and self-organizing map, is used to detect and diagnose faults in EVA production process. Then, the fault propagation pathways are identified using Granger causality test. One year and seven months of operation data were obtained to detect faults of the process, and the process variables of the autoclave reactor are mainly analyzed. In the data pretreatment process, the data are standardized and 200 samples of each grade are randomly chosen to obtain a fault detection model. After that, the best matching unit (BMU) of each grade is confirmed by applying AE-SOM. The faults are determined based on each BMU. When a fault is found, the most causative variable of the fault is identified by using a contribution plot, and the fault propagation pathway is identified by Granger causality test. The prognostic of the two shutdowns is detected, and the fault propagation pathway caused by the faulty variable was analyzed.

A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps (자기 조직화 맵 기반 유사화상 검색의 고속화 수법)

  • Oh, Kun-Seok;Yang, Sung-Ki;Bae, Sang-Hyun;Kim, Pan-Koo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.515-522
    • /
    • 2001
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Map(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented about k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

  • PDF

Patterning Waterbird Assemblages on Rice Fields Using Self-Organizing Map and Random Forest (자기조직화지도(Self-organizing map)와 랜덤 포레스트 분석(Random forest)을 이용한 논습지에 도래하는 수조류 군집 특성 파악)

  • Nam, Hyung-Kyu;Choi, Seung-Hye;Yoo, Jeong-Chil
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.168-177
    • /
    • 2015
  • BACKGROUND: In recent year, there has been great concern regarding agricultural land uses and their importance for the conservation of biodiversity. Rice fields are managed unique wetland for wildlife, especially waterbirds. A comprehensive monitoring of the waterbird assemblage to understand patterning changes was attempted for rice ecosystem in South Korea. This rice ecosystem has been recognized as one of the most important for waterbirds conservation. METHODS AND RESULTS: Biweekly monitoring was implemented for the 4 years from April 2009 to March 2010, from April 2011 to March 2014. 32 species of waterbirds were observed. Self-organizing map (SOM) and random forest were applied to the waterbirds dataset to identify the characteristics in waterbirds distribution. SOM and random forest analysis clearly classified into four clusters and extract ecological information from waterbird dataset. Waterbird assemblages represented strong seasonality and habitat use according to waterbird group such as shorebirds, herons and waterfowl. CONCLUSION: Our results showed that the combination of SOM and random forest analysis could be useful for ecosystem assessment and management. Furthermore, we strongly suggested that a strict management strategy for the rice fields to conserve the waterbirds. The strategy could be seasonally and species specific.