• Title/Summary/Keyword: Self Organizing Map(SOM)

Search Result 235, Processing Time 0.022 seconds

A Trial of Developing an Application for Mobile Devices to Analyze Saga Prefectural Sightseeing Information

  • Wakuya, Hiroshi;Horinouchi, Yu;Itoh, Hideaki
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.253-254
    • /
    • 2013
  • In the preceding studies, an analysis of Saga Prefectural sightseeing information by a self-organizing map (SOM) has been tried. And recent development on information and communication technology (ICT) will help us to access any results via the mobile devices easily. Then, in order to realize this basic idea, development of an application for mobile devices is investigated through some preliminary computer simulations on the standard desktop PC in this article.

  • PDF

Multi-Objective Optimization Using Kriging Model and Data Mining

  • Jeong, Shin-Kyu;Obayashi, Shigeru
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, a surrogate model is applied to multi-objective aerodynamic optimization design. For the balanced exploration and exploitation, each objective function is converted into the Expected Improvement (EI) and this value is used as fitness value in the multi-objective optimization instead of the objective function itself. Among the non-dominated solutions about EIs, additional sample points for the update of the Kriging model are selected. The present method was applied to a transonic airfoil design. Design results showed the validity of the present method. In order to obtain the information about design space, two data mining techniques are applied to design results: Analysis of Variance (ANOVA) and the Self-Organizing Map (SOM).

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Study on Load Analysis of Propulsion System using SOM (자기조직화지도를 이용한 추진시스템의 전력부하분석 연구)

  • Jang, Jae-Hee;Oh, Jin-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.447-453
    • /
    • 2019
  • Recently, environmental regulations have been strengthened for SOX, NOX, and CO2, which are ship exhaust gases. In addition, according to the 4th Industrial Revolution, research on autonomous ship technology has become active and interest in electric propulsion systems is increasing. This paper analyzes the power load characteristics of an electric propulsion ship, which is the basic technology for an autonomous ship, in terms of energy management. For the load analysis, data were collected for a 6,800 TEU container ship with a mechanical propulsion system, and the propulsion load was converted to an electric power load and clustered according to the characteristics using a SOM (Self-Organizing Map). As a result of the load analysis, it was confirmed that the load characteristics of the ship could be explained by the operation mode of the ship.

Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm (셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성)

  • 이상섭;이종섭;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF

A Study on the Partial Discharge Pattern Recognition by Use of SOM Algorithm (SOM 알고리즘을 이용한 부분방전 패턴인식에 대한 연구)

  • Kim Jeong-Tae;Lee Ho-Keun;Lim Yoon Seok;Kim Ji-Hong;Koo Ja-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.515-522
    • /
    • 2004
  • In this study, we tried to investigate that the advantages of SOM(Self Organizing Map) algorithm such as data accumulation ability and the degradation trend trace ability would be adaptable to the analysis of partial discharge pattern recognition. For the purpose, we analyzed partial discharge data obtained from the typical artificial defects in GIS and XLPE power cable system through SOM algorithm. As a result, partial discharge pattern recognition could be well carried out with an acceptable error by use of Kohonen map in SOM algorithm. Also, it was clarified that the additional data could be accumulated during the operation of the algorithm. Especially, we found out that the data accumulation ability of Kohonen map could make it possible to suggest new patterns, which is impossible through the conventional BP(Back Propagation) algorithm. In addition, it is confirmed that the degradation trend could be easily traced in accordance with the degradation process. Therefore, it is expected to improve on-site applicability and to trace real-time degradation trends using SOM algorithm in the partial discharge pattern recognition

Deduction of regional characteristics using environmental spatial information and SOM (Self-Organizing map) for natural park zoning - Focused on Taeanhaean National Park - (자연공원 용도지구 설정을 위한 환경공간정보와 SOM(Self-Organizing map)을 활용한 지역 특성 도출 - 태안해안국립공원을 대상으로 -)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.3
    • /
    • pp.1-17
    • /
    • 2023
  • Korea's natural parks are managed by dividing them into four use districts: nature preservation district, natural environment district, cultural heritage district, and park village district within the park under the goal of 'conservation and sustainable use of natural parks'. However, the use districts divided in this way are designated by reflecting the results derived from the simple drawing overlapping method, and there is a limit in that objective and scientific evidence for this is insufficient. In addition, in Taeanhaean National Park, the case of this study, only a very small area of less than 1% of the nature preservation district is designated, and the natural environment district that serves as a buffer space is designated on an excessively wide scale, making it difficult to efficiently manage the national park. Therefore, the use district is not fulfilling its role. In this study, the purpose of this study was to present a method for analyzing the spatial characteristics of natural parks using environmental indicators and unsupervised learning analysis methods to set the use districts of natural parks. In this study, evaluation indicators that can evaluate the natural and human environments were derived, and the distribution patterns for each indicator were analyzed. Afterwards, by applying Self-Organizing Map (SOM) analysis, one of the unsupervised learning analysis methods, districts with similar characteristics were derived in Taeanhaean National Park, and the characteristics of each district were analyzed. As a result of the study, 7 districts with different characteristics were derived in Taeanhaean National Park, and by examining the contribution of each indicator together, it was possible to reveal that each district had different representative characteristics even though it was an adjacent area. This study evaluated natural parks by comprehensively considering the indicators of the natural and human environments. In addition, the SOM method used in the study is meaningful in that it can provide scientific and objective grounds for the existing zoning and apply it to the management plan.

Development of Enhanced Data Mining System for the knowledge Management in Shipbuilding (조선기술지식 관리를 위한 개선된 데이터 마이닝 시스템 개발)

  • Lee, Kyung-Ho;Yang, Young-Soon;Oh, June;Park, Jong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.298-302
    • /
    • 2006
  • As the age of information technology is coming, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. we focused on data mining system by using genetic programming. But, we don't have enough data to perform the learning process of genetic programming. We have to reduce input parameter(s) or increase number of learning or training data. In order to do this, the enhanced data mining system by using GP combined with SOM(Self organizing map) is adopted in this paper. We can reduce the number of learning data by adopting SOM.

  • PDF

Comparative Analyses of Community and Biological Indices based on Benthic Macroinvertebrates in Streams using a Self-Organizing Map

  • Tang, Hong Qu;Bae, Mi-Jung;Chon, Tae-Soo;Song, Mi-Young;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.303-316
    • /
    • 2009
  • Benthic macroinvertebrate communities collected from eight different streams in South Korea were analyzed to compare community and biological indices across different levels of water pollution. The Self-Organizing Map (SOM) was utilized to provide overview on association of the proposed indices. The sample sites were accordingly clustered according to the gradient of pollution on the SOM. While the general trends of the indices were commonly observable according to different levels of pollution, the detailed differences among the indices were also illustrated on the SOM. The conventional diversity and evenness indices tended to be high even though the water quality state was poor representing relatively weak gradient at polluted sites, while the index presenting the saprobic degree such as family biotic index showed the stronger gradient at the polluted area and was robust to present the gradient. Our results also confirmed the general characterization of two indices: The Shannon index is more strengthened by the number of species occurring at the sample sites, while the Simpson index is more influenced by the degree of evenness among the species. The patterning based on the SOM was efficient in comparatively characterizing the proposed indices to present ecological states and water quality.