Proceedings of the Korea Contents Association Conference
/
2015.05a
/
pp.3-4
/
2015
A self-organizing map (SOM) is a good tool to visualize applied data in the form of a feature map. With the help of such functions, a disaster risk diagnosis based on the residential house structure is tried in this study. According to some computer simulations with actual residential data, it is found that overall tendencies in the developed feature map are acceptable. Then, it is concluded that the proposed method is an effective means to estimate disaster risk appropriately.
Park, Byeong Eon;Ji, Yumi;Sim, Ye Seul;Lee, Kyu-Hwang;Lee, Ho Kyung
Korean Chemical Engineering Research
/
v.58
no.3
/
pp.408-415
/
2020
In this study, the AE-SOM method, which combines auto-encoder and self-organizing map, is used to detect and diagnose faults in EVA production process. Then, the fault propagation pathways are identified using Granger causality test. One year and seven months of operation data were obtained to detect faults of the process, and the process variables of the autoclave reactor are mainly analyzed. In the data pretreatment process, the data are standardized and 200 samples of each grade are randomly chosen to obtain a fault detection model. After that, the best matching unit (BMU) of each grade is confirmed by applying AE-SOM. The faults are determined based on each BMU. When a fault is found, the most causative variable of the fault is identified by using a contribution plot, and the fault propagation pathway is identified by Granger causality test. The prognostic of the two shutdowns is detected, and the fault propagation pathway caused by the faulty variable was analyzed.
Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.
Journal of Korean Society of Industrial and Systems Engineering
/
v.42
no.2
/
pp.94-103
/
2019
Self Organizing Map (SOM) is a neural network that is effective in classifying patterns that form the feature map by extracting characteristics of the input data. In this study, we propose an algorithm to determine the cell formation and the machine layout within the cell for the cell formation problem with operation sequence using the SOM. In the proposed algorithm, the output layer of the SOM is a one-dimensional structure, and the SOM is applied to the parts and the machine in two steps. The initial cell is formed when the formed clusters is grouped largely by the utilization of the machine within the cell. At this stage, machine cell are formed. The next step is to create a flow matrix of the all machine that calculates the frequency of consecutive forward movement for the machine. The machine layout order in each machine cell is determined based on this flow matrix so that the machine operation sequence is most reflected. The final step is to optimize the overall machine and parts to increase machine layout efficiency. As a result, the final cell is formed and the machine layout within the cell is determined. The proposed algorithm was tested on well-known cell formation problems with operation sequence shown in previous papers. The proposed algorithm has better performance than the other algorithms.
This paper provides a framework for semantic correspondence of heterogeneous databases using self- organizing map. It solves the problem of overlapping between different databases due to their different schemas. Clustering technique using self-organizing maps (SOM) is tested and evaluated to assess its performance when using different kinds of data. Preprocessing of database is performed prior to clustering using edit distance algorithm, principal component analysis (PCA), and normalization function to identify the features necessary for clustering.
This paper deals with recognizing ten korean voiced vowels using Self Organizing Map. SOM is a good classifier. The output layer is composed of two dimensions. The input vector is the frequency values having the characteristic of voiced vowels. The short time frequency transform is used getting input vector. The final neural networks is attached SOM output layer.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.9-18
/
2005
In order to systematically and visually understand well-known but qualitative and rotatively complicated relationships between synoptic fields in the BAIU season and heavy rainfall events in Japan, these synoptic fields were classified using the Self-Organizing Map (SOM) algorithm. This algorithm can convert complex nonlinear features into simple two-dimensional relationships, and was followed by the application of the clustering techniques of the U-matrix and the K-means. It was assumed that the meteorological field patterns be simply expressed by the spatial distribution of wind components at the 850 hPa level and Precipitable Water (PW) in the southwestern area including Kyushu in Japan. Consequently, the synoptic fields could be divided into eight kinds of patterns (clusters). One of the clusters has the notable spatial feature represented by high PW accompanied by strong wind components known as Low-Level Jet (LLJ). The features of this cluster indicate a typical meteorological field pattern that frequently causes disastrous heavy rainfall in Kyushu in the rainy season. From these results, the SOM technique may be an effective tool for the classification of complicated non-linear synoptic fields.
Benthic macro invertebrate communities were collected at six different sampling sites in the Musucheon stream in Korea from July 2006 to July 2007, and ecological exergy values were calculated based on five different functional feeding groups (collector-gatherer, collector-filterer, predator, scrapper, and shredder) of benthic macro invertebrates. Each sampling site was categorized to three stream types (perennial, intermittent and drought) based on the water flow condition. Exergy values were low at all study sites right after a heavy rain and relatively higher in the perennial stream type than in the intermittent or the drought stream type. Self-Organizing Map (SOM), unsupervised artificial neural network, was implemented to pattern spatial and temporal dynamics of ecological exergy of the study sites. SOM classified samples into four clusters. The classification reflected the effects of floods and droughts on benthic macroinvertebrate communities, and was mainly related with the stream types of the sampling sites. Exergy values of each functional feeding group also responded differently according to the different stream types. Finally, the results showed that exergy is an effective ecological indicator, and patterning changes of exergy using SOM is an effective way to evaluate target ecosystems.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.251-254
/
2001
본 논문에서는 Self Organizing Map을 이용하여 fMRI data를 분석해 보았다. fMRl (functional Magnetic Resonance Imaging)는 인간의 뇌에 대한 비 침투적 연구 방법 중 최근에 각광받고 있는 것이다. Motor task를 수행하고 있는 피험자로부터 image data를 얻어내어 SOM을 적용하여 clustering한 결과 motor cortex 영역이 뚜렷하게 clustering 되었음을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.325-327
/
2012
스마트 홈은 단순한 가정 내 네트워크 연결이 아닌 주택(건물)내의 정보 기술 요소를 구현하는 토털 홈 정보 제어 시스템 서비스, 솔루션을 총칭한다. 현재는 언제, 어디서, 어떤 기기로건 인터넷에 접속할 수 있는 유비쿼터스(Ubiquitous) 시대이자, 개별 사물들이 인터넷에 연결되어 스스로 필요한 정보를 주고받게 될 시대가 도래함에 따라 사람들의 주요 생활공간에서도 활용도가 점차 커지는 것이다. 수시로 변화하는 상황에 적응하며 정확도가 높은 스마트 서비스의 제공을 위해서는 사용자의 의도에 부합하는 Semantic-Context 정보생성을 위한 SOM(Self-Organizing Map)추론 방식의 알고리즘과 정보의 의미화로 다양한 서비스를 지원할 수 있는 인프라 대비 최대 서비스가 요구된다. 이에 따라 본 논문에서는 스마트 홈에서 이종 가전기기들의 상황정보를 센서 데이터로부터 추출하여 사용자 맞춤형 서비스를 제공하기 위한 SOM 추론 기반의 스마트 홈을 설계한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.