• Title/Summary/Keyword: Self Organizing Map(SOM)

Search Result 235, Processing Time 0.022 seconds

Real-Time Change Detection Architecture Based on SOM for Video Surveillance Systems (영상 감시시스템을 위한 SOM 기반 실시간 변화 감지 기법)

  • Kim, Jongwon;Cho, Jeongho
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.109-117
    • /
    • 2019
  • In modern society, due to various accidents and crime threats committed to an unspecified number of people, individual security awareness is increasing throughout society and various surveillance techniques are being actively studied. Still, there is a decline in robustness due to many problems, requiring higher reliability monitoring techniques. Thus, this paper suggests a real-time change detection technique to complement the low robustness problem in various environments and dynamic/static change detection and to solve the cost efficiency problem. We used the Self-Organizing Map (SOM) applied as a data clustering technique to implement change detection, and we were able to confirm the superiority of noise robustness and abnormal detection judgment compared to the detection technique applied to the existing image surveillance system through simulation in the indoor office environment.

Digital Watermarking Technique using self-similarity (자기유사성을 이용한 디지털 워터마킹 기법)

  • Lee, Mun-Hee;Lee, Young-hee
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.37-47
    • /
    • 2003
  • In this paper. we propose a new digital watermarking technique which uses the self-similarity of OCT(Discrete Cosine Transform) coefficients for the ownership protection of an image, similar coefficients are classified by SOM(Self-Organizing Map) out of Neural Network. The watermark is inserted into the selected cluster among clusters which consist of coefficients. Generally, the inserted watermark in high frequency regions of an image is eliminated by the compression process such as JPEG compressions, and the inserted watermark in low frequency regions of an image causes the distortion of an image quality. Therefore, the watermark is inserted into the cluster that has many coefficients in the middle frequency regions. This algorithm reduces the distortion of an image quality because of inserting the watermark into an image according to the number of coefficients in selected cluster. To extract watermarks from the watermarked image, the selected cluster is used without an original image. In the experiment, the new proposed algorithm have a good quality and endure attacks(JPEG compressions, filtering. zoom in, zoom out, cropping, noises) very well.

  • PDF

Development of MSDS Map for Visual Safety Management of Hazardous and Chemical Materials (유해화학물질의 시각적 안전관리를 위한 MSDS 지도 개발)

  • Shin, Myungwoo;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.48-55
    • /
    • 2019
  • For preventing the accidents generated from the chemical materials, thus far, MSDS (Material Safety Data Sheet) data have been made to notify how to use and manage the hazardous and chemical materials in safety. However, it is difficult for users who handle these materials to understand the MSDS data because they are only listed based on the alphabetical order, not based on the specific factors such as similarity of characteristics. It is limited in representing the types of chemical materials with respect to their characteristics. Thus, in this study, a lots of MSDS data are visualized based on relationships of the characteristics among the chemical materials for supporting safety managers. For this, we used the textmining algorithm which extracts text keywords contained in documents and the Self-Organizing Map (SOM) algorithm which visually addresses textual data information. In the case of Occupational Safety and Health Administration (OSHA) in the United States, the guide texts contained in MSDS documents, which include use information such as reactivity and potential risks of materials, are gathered as the target data. First, using the textmining algorithm, the information of chemicals is extracted from these guide texts. Next, the MSDS map is developed using SOM in terms of similarity of text information of chemical materials. The MSDS map is helpful for effectively classifying chemical materials by mapping prohibited and hazardous substances on the developed the SOM map. As a result, using the MSDS map, it is easy for safety managers to detect prohibited and hazardous substances with respect to the Industrial Safety and Health Act standards.

Relationship between Phytoplankton Community and Water Quality in Lakes in Jeonnam using SOM (SOM을 이용한 전남 호소의 식물플랑크톤 군집과 수질 관계 분석)

  • Cho, Hyeon Jin;Na, Jeong Eun;Jung, Myoung Hwa;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.148-156
    • /
    • 2017
  • In this study, we analyzed the relationship between phytoplankton community and physicochemical factors in 12 lakes located in Jeollanam-do based on the data surveyed from March to November 2014. Totally, 297 species of phytoplankton were identified including 98 Bacillariophyceae, 148 Chlorophyceae, 23 Cyanophyceae and 28 other phytoplankton taxa. The standing crops ranged from 124 to $59,148cells\;mL^{-1}$ and showed the highest in August with the increase of Cyanophycean cells. The self-organizing map (SOM) was optimized into $9{\times}6$ grid and was classified into 5 clusters based on the similarity of environmental factors and phytoplankton indices. The SOM results showed that phytoplankton communities had positive relationship with water temperature, SS, DO, BOD, TP and Chl-a, whereas low relationship with pH, TN, $NH_3-N$, $NO_3-N$, $PO_4-P$ and Conductivity. In Pearson's correlation coefficient, relationship between environmental factors and phytoplankton communities showed similar results with SOM.

Comparative Analysis of BP and SOM for Partial Discharge Pattern Recognition (부분방전 패턴인식에 대한 BP 및 SOM 알고리즘 비교 분석)

  • Lee, Ho-Keun;Kim, Jeong-Tae;Lim, Yoon-Seok;Kim, Ji-Hong;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1930-1932
    • /
    • 2004
  • SOM(Self Organizing Map) algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. For the purpose, partial discharge data were acquired and analysed from the artificial defects in GIS. As a result, basically the pattern recognition rate of BP algorithm was found out to be better than that of SOM algorithm. However, SOM algorithm showed a great on-site-applicability such as ability of suggesting new-pattern-possibility. Therefore, through increasing pattern recognition rate it is possible to apply SOM algorithm to partial discharge analysis. Also, for the image processing method it is required the normalization of the PRPDA graph. However, due to the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF

A Two-level Self-Organizing Map for Automatic Response of Hanmail Net Questions (한메일넷 질의 자동응답을 위한 이단계 자기구성 지도)

  • 김현도;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.481-483
    • /
    • 2000
  • 컴퓨터가 널리 보급되고 인터넷이 발전함에 따라 많은 정보가 생산되고, 이러한 정보를 가공하여 사용자에게 효율적으로 제공하는 서비스들도 많아지게 되었다. 그러나, 컴퓨터에 익숙하지 않은 사용자들은 쉽게 이러한 서비스를 이용하지 못하기 때문에 사용자들을 돕는 시스템들이 필요하게 되었다. 한메일넷의 경우 전자 우편을 통한 사용자들의 질문에 대해 관리자가 직접 답을 해주는데, 사용자의 증가로 질의응답 업무의 양이 커지고 있다. 따라서, 본 논문에서는 사용자의 질의에 자동으로 응답하는 시스템을 개발하기 위하여 효율적인 이단계 자기구성 지도(SOM)를 제안한다. 이 방법은 다양한 크기의 질의메일을 정형화된 크기로 만들기 위한 데이터 축약 SOM과 이를 실제 해당 답변 클래스로 분류하는 문서 분류 SOM으로 구성된다. 실제 사용되고 있는 2206개의 데이터에 대한 실험 결과, 95%의 분류 성공률을 보여 그 가능성을 볼 수 있었다.

  • PDF

Discretization of Continuous Attributes based on Rough Set Theory and SOM (러브집합이론과 SOM을 이용한 연속형 속성의 이산화)

  • Seo Wan-Seok;Kim Jae-Yearn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Data mining is widely used for turning huge amounts of data into useful information and knowledge in the information industry in recent years. When analyzing data set with continuous values in order to gain knowledge utilizing data mining, we often undergo a process called discretization, which divides the attribute's value into intervals. Such intervals from new values for the attribute allow to reduce the size of the data set. In addition, discretization based on rough set theory has the advantage of being easily applied. In this paper, we suggest a discretization algorithm based on Rough Set theory and SOM(Self-Organizing Map) as a means of extracting valuable information from large data set, which can be employed even in the case where there lacks of professional knowledge for the field.

SOM-based Spatio-Temporal Data Mining System (SOM 기반 시공간 데이터 마이닝 시스템)

  • Kang Juyoung;Lee Bongjae;Song Jaeju;Shin Jinho;Yong Hwanseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.105-108
    • /
    • 2004
  • 데이터 양이 급증함에 따라 축적된 데이터로부터 의미있는 지식을 추출해 내고자 하는 데이터 마이닝에 대한 연구가 활발하게 진행되어 왔다. 특히 최근, 환경이 이동 분산화 되어감에 따라 감시${\cdot}$모니터링 시스템, 기상 관측 시스템, GPS 시스템과 같은 다양한 응용 시스템으로부터 방대한 양의 시공간 데이터가 발생하게 되었고, 이른 효율적으로 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 데이터 마이닝 기법의 경우 문자나 숫자 데이터를 대상으로 최적화 되어있기 때문에 시${\cdot}$공간 속성을 동시에 가지는 데이터를 분석하기에는 한계가 있는 것이 사실이다. 본 논문에서는 SOM(Self-Organizing Map)을 적용하여 시공간 클러스터링 모듈을 개발하고, 개발된 모듈의 성능 및 클러스터링 정확성을 다른 세 가지 군집분석 알고리즘과 비교, 분석하였다. 또한 가시화 모듈을 개발하여 입력 데이터의 특성과 결과를 더욱 정확하게 분석할 수 있도록 하였다.

  • PDF

Content-based Trademark Image Retrieval System using SOM (SOM을 이용한 등록상표에 대한 내용기반 이미지 검색)

  • Lee, Jae-Jun;Shin, Min-Ki;Paik, Woo-Jin;Shin, Moon-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.489-492
    • /
    • 2007
  • 산업재산권중 하나인 상표에 대한 효율적인 이미지 검색은 상표도용 및 이로 인한 분쟁을 방지할 수 있다. 이를 위해서는 효율적인 내용기반 유사이미지 검색이 필요하다. 본 논문에서는 상표이미지검색에 있어 가시적인 특성(visual feature)을 그레이 히스토그램을 통해서 상표이미지의 특성값을 추출하여 이를 입력패턴으로 SOM(Self-Organizing Map)알고리즘을 적용한 내용기반 유사이미지 검색시스템을 제안한다.

Predicting Power Generation Patterns Using the Wind Power Data (풍력 데이터를 이용한 발전 패턴 예측)

  • Suh, Dong-Hyok;Kim, Kyu-Ik;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.245-253
    • /
    • 2011
  • Due to the imprudent spending of the fossil fuels, the environment was contaminated seriously and the exhaustion problems of the fossil fuels loomed large. Therefore people become taking a great interest in alternative energy resources which can solve problems of fossil fuels. The wind power energy is one of the most interested energy in the new and renewable energy. However, the plants of wind power energy and the traditional power plants should be balanced between the power generation and the power consumption. Therefore, we need analysis and prediction to generate power efficiently using wind energy. In this paper, we have performed a research to predict power generation patterns using the wind power data. Prediction approaches of datamining area can be used for building a prediction model. The research steps are as follows: 1) we performed preprocessing to handle the missing values and anomalous data. And we extracted the characteristic vector data. 2) The representative patterns were found by the MIA(Mean Index Adequacy) measure and the SOM(Self-Organizing Feature Map) clustering approach using the normalized dataset. We assigned the class labels to each data. 3) We built a new predicting model about the wind power generation with classification approach. In this experiment, we built a forecasting model to predict wind power generation patterns using the decision tree.