• Title/Summary/Keyword: Self Leveling materials

Search Result 24, Processing Time 0.034 seconds

Development of Polymer-Modified Cementitious Self-Leveling Materials for Thin Coat

  • Kim, Wan-Ki;Do, Jeong-Yun;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.58-66
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top coat with thin thickness, typically 5~15mm. The purpose of this study is to evaluate basic properties of self-leveling materials using polymer dispersions as kinds of SBR, PAE, St/BA with thin coat (under 3mm). Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as to facilitate the workability required. The self-leveling materials using four types of polymer dispersion are prepared with polymer-cement ratio which respectively range from 50% and 75%, and tested for basic characteristics such as unit weight, air content, flow, consistency change and adhesion in tension. From the test results, the self-leveling materials using PAE emulsion at curing age of 28days are almost equal to those of conventional floor using urethane and epoxy resin. The adhesion in tension of self-leveling mortars using SBR latex and PAE emulsion at curing age of 3days is over 17 kgf/cm$^2$(1.67MPa). Consistency change is strongly dependent on the type of polymer dispersion. It is concluded that the self-leveling materials using polymer dispersions can be used in the same manner as conventional floor using thermosetting resin in practical applications, in the selection of polymer dispersions.

  • PDF

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

A finishing construction method for concrete floor and slab using the cement based self leveling mortar (시멘트계 SL재를 사용한 콘크리트슬래브 미장공법)

  • 손형호;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.387-392
    • /
    • 1994
  • Recently, as the problems according to lack of skilled labour and superior construction materials were gathering strength, there were required the advent of a special materials in building construction division. As a view of the point, the cement-based Self leveling mortar was developed for improvements of the former problems. The Self leveling mortar has the all kinds of the properties as followed the premixed products in plant, self-smoofhing, non shrinkgae etc, accordingly the finishing of concrete floor don't need skilled labour. The purpose of this study is to establish the introduction of a finishing construction method for concrete floor and slab using the cement-based self leveling mortar. Presented is a study on the basic properties of fresh and hardened self leveling mortar. To this end, an actual floor's finishing construction using the cement-based self leveling mortar was conducted in approximately 1,800㎡ floor as to compare the flatness and levelness after finighing.

  • PDF

Test tool for flow and self-leveling characters of coating materials of siloxane polymer used to semiconductor and electronic parts (반도체와 전자 부품에 사용되는 실록산 고분자 코팅물질의 흐름성 및 자기 퍼짐성 측정 시험장치 연구)

  • Kim, Cheol-Hyun;Cho, Hyeon-Mo;Lee, Myong-Euy
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2012
  • A test tool for self-leveling and flowing characters of coating materials used to semiconductors and electronic parts, especially for protection of LCD and PDP connectors, was designed, and the test tool was evaluated using polymeric siloxane coating materials which have various viscosities. The test results showed that the designed test tool was effective to measure self-leveling and flowing properties of coating materials. Therefore, considering that the viscosity is not directly correlated with self-leveling and flowing properties, we believe that this test tool will be a very useful tool for measurement instead of classical method using viscosities of coating materials. Particularly, the measurement of self-leveling and flowing properties using the test tool would be expected to be used in the area of selecting suitable protective coating materials for LCD (Liquid Crystal Display), PDP (Plasma Display Panel) and semiconductor connection parts.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.89-98
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 200mm of flow value and above 300kgf/$cm^2$ of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary Portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~15% AG.

Basic Efficiency Assessment of polymer cementitious Self leveling for floor-finishing materials (폴리머 시멘트계 Self leveling 바닥마감재의 기초성능평가)

  • 도정윤;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1005-1010
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top layers with thin thicknesses, typically 5~ 15mm. The purpose of this study is to evaluate basic properties of self leveling materials using polymer modifier as kinds of SBR, PAE, SUBA. Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as in order to facilitate the workability required. The self leveling materials using four types of polymer dispersion are prepared with polymer-cement ratios which respectively range from 50%, 75%, and were tested for basic characteristics such as adhesion in tension, crack resistance test, rebound test after the preparative tests for unit weight, air content, consistency ratio etc. The results show almost as equal quality as existing commercial industrial flooring when mortar is modified by polymer dispersion. Adhesion in tension of polymer modified mortars using each SBR and PAE emulsion was over 10 kgf/$cm^{2}$. Crack or flaw derived from shrinkage is strongly dependent on the type of polymer dispersion because of each different total solid of polymer. It is judged that polymer modified mortar with self-leveling can be very well suited for Floor-finished.

  • PDF

CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

  • Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement (고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구)

  • Park, Bong-Geun;Cho, Kook-Hwan;Na, Kyung;Yoon, Tae-Gook;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

Synthesis and Physical Property of Multi-Functional Siloxane Protective Coating Materials Applicable for Electronic Components

  • Kim, Cheol Hyun;Cho, Hyeon Mo;Lee, Myong Euy
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1665-1669
    • /
    • 2014
  • Four multialkoxy-functionalized siloxane base-polymers (BP-1~4) were synthesized through either hydrosilylation or condensation reactions in order to prepare multi-networked siloxane polymers having appropriate physical properties for protective coating in fabrications of electronics. Formulations of 4 base-polymers gave coating materials A and B. Product A showed well-controlled flowing and leveling properties, and product A-2 was successfully applied to protective insulating coating for junction areas of connectors and chips in PDP controller. Tack free time, extrusion rate, dielectric breakdown voltage, hardness, thermal stability, water resistance and flame resistance of products A and B were examined.

A Study on the Deformation Characteristics on Underground Pipe to Backfill Material Types Using Finite Element Method (유한요소해석을 통한 되메움재 종류에 따른 지하매설관의 변형 특성 연구)

  • Byun, Yoseph;Ahn, Byungje;Kwang, Byeongjoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.11-18
    • /
    • 2009
  • When underground pipe is installed, backfill materials need proper compaction. But in case of circular underground pipe, compaction of backfill material is difficult and compaction efficiency is poor at beloe the pipe. It caused the stability of underground pipe is reduced and various damages occurred. One of the solutions to solve this problem for underground pipe is to use controlled low strength material (CLSM). CLSM is made by concept of low strength concrete, which is applied to geotechnical engineering field. The representative characteristics of CLSM are self-leveling, self-compacting and flowability. In addition, its strength can be controlled and its construction method is simple. The behavior of underground pipe was investigated by finite element analysis for various backfill materials under same condition. As a result, in case of using the CLSM as backfill material, surface settlement and displacement of pipe are reduced comparing with those in case of using field soil or sand.

  • PDF