• Title/Summary/Keyword: Selenization

Search Result 69, Processing Time 0.028 seconds

Characteristics of CIGS Thin Film Photovoltaic Cells with a Change of Rising-Temperature Time in Rapid Thermal Processing (급속열처리장치 승온 조건에 따른 CIGS 박막 태양전지 특성 연구)

  • Jeong, Yong-Min;Park, Chan-Il;Cho, Geum-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.107-112
    • /
    • 2013
  • Cu(In,Ga)$Se_2$ (CIGS) thin films were annealed on molybdenium/sodalime glass substrates of $300{\times}300mm^2$ by rapid thermal processing (RTP) with 2-step rising-temperature times in $N_2$ ambient. Morphological property, structural characteristics and chemical composition of the precursor of CIGS thin films were influenced directly with a change of $1^{st}$-step rising-temperature time in RTP whereas there is no significant difference with the different $2^{nd}$-step rising-temperature time (final crystallization temperature). The shorter $1^{st}$-step rising-temperature time in RTP obtained the higher photovoltaic cell efficiency from 7.469% to 8.479% even though the ideal composition in CIGS thin films could not be accoplished in this study.

Comparison of Depth Profiles of CIGS Thin Film by Micro-Raman and XPS (마이크로 라만 및 XPS를 이용한 CIGS 박막의 두께방향 상분석 비교)

  • Beak, Gun Yeol;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • Chalcopyrite based (CIGS) thin films have considered to be a promising candidates for industrial applications. The growth of quality CIGS thin films without secondary phases is very important for further efficiency improvements. But, the identification of complex secondary phases present in the entire film is crucial issue due to the lack of powerful characterization tools. Even though X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and normal Raman spectroscopy provide the information about the secondary phases, they provide insufficient information because of their resolution problem and complexity in analyzation. Among the above tools, a normal Raman spectroscopy is better for analysis of secondary phases. However, Raman signal provide the information in 300 nm depth of film even the thickness of film is > $1{\mu}m$. For this reason, the information from Raman spectroscopy can't represent the properties of whole film. In this regard, the authors introduce a new way for identification of secondary phases in CIGS film using depth Raman analysis. The CIGS thin films were prepared using DC-sputtering followed by selenization process in 10 min time under $1{\times}10^{-3}torr$ pressure. As-prepared films were polished using a dimple grinder which expanded the $2{\mu}m$ thick films into about 1mm that is more than enough to resolve the depth distribution. Raman analysis indicated that the CIGS film showed different secondary phases such as, $CuIn_3Se_5$, $CuInSe_2$, InSe and CuSe, presented in different depths of the film whereas XPS gave complex information about the phases. Therefore, the present work emphasized that the Raman depth profile tool is more efficient for identification of secondary phases in CIGS thin film.

Over 8% efficient nanocrystal-derived Cu2ZnSnSe4 solar cells with molybdenum nitride barrier films in back contact structure

  • Pham, Hong Nhung;Jang, Yoon Hee;Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.426.2-426.2
    • /
    • 2016
  • Numerous of researches are being conducted to improve the efficiency of $Cu_2ZnSnSe_4$ (CZTSe)-based photovoltaic devices, which is one of the most promising candidates for low cost and environment-friendly solar cells. In this work, we concentrate on the back contact of the devices. A proper thickness of $MoSe_2$ in back contact structure is believed to enhance adhesion and ohmic contact between Mo back contact and absorber layer. Nevertheless, too thick $MoSe_2$ layers that are grown during high-temperature selenization process can impede the current collection, thus resulting in low cell performance. By applying molybdenum nitride as a barrier in back contact structure, we were able to control the thickness of $MoSe_2$ layer, which resulted in lower series resistance and higher fill factor of CZTSe devices. The phase transformation of Mo-N binary system was systematically studied by changing $N_2$ concentration during the sputtering process. With a proper phase of Mo-N fabricated by using an adequate partial pressure of $N_2$, the efficiency of CZTSe solar cells as high as 8.31% was achieved while the average efficiency was improved by about 2% with respect to that of the referent cells where no barrier layer was employed.

  • PDF

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • Gang, Myeong-Gil;Hong, Chang-U;Yun, Jae-Ho;Gwak, Ji-Hye;An, Seung-Gyu;Mun, Jong-Ha;Kim, Jin-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

  • Ismail, Agus;Cho, Jin Woo;Park, Se Jin;Hwang, Yun Jeong;Min, Byoung Koun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1985-1988
    • /
    • 2014
  • $Cu_2ZnSnSe_4$ (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at $400^{\circ}C$ involves the formation of secondary phases such as $CuSe_2$ and $Cu_2SnSe_3$, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 $cm^2$ with an open circuit voltage of 365 mV, a short current density of 20.6 $mA/cm^2$, and a fill factor of 28.7%.

The Study on Cu2ZnSnSe4 Thin Films without Annealed Grown by Pulsed Laser Deposition for Solar Cells

  • Bae, Jong-Seong;Byeon, Mi-Rang;Hong, Tae-Eun;Kim, Jong-Pil;Jeong, Ui-Deok;Kim, Yang-Do;O, Won-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.398.1-398.1
    • /
    • 2014
  • The $Cu_2ZnSnSe_4$ (CZTSe) thin films solar cell is one of the next generation candidates for photovoltaic materials as the absorber of thin film solar cells because it has optimal bandgap (Eg=1.0eV) and high absorption coefficient of $10^4cm^{-1}$ in the visible length region. More importantly, CZTSe consists of abundant and non-toxic elements, so researches on CZTSe thin film solar cells have been increasing significantly in recent years. CZTSe thin film has very similar structure and properties with the CIGS thin film by substituting In with Zn and Ga with Sn. In this study, As-deposited CZTSe thin films have been deposited onto soda lime glass (SLG) substrates at different deposition condition using Pulsed Laser Deposition (PLD) technique without post-annealing process. The effects of deposition conditions (deposition time, deposition temperature) onto the structural, compositional and optical properties of CZTSe thin films have been investigated, without experiencing selenization process. The XRD pattern shows that quaternary CZTSe films with a stannite single phase. The existence of (112), (204), (312), (008), (316) peaks indicates all films grew and crystallized as a stannite-type structure, which is in a good agreement with the diffraction pattern of CZTSe single crystal. All the films were observed to be polycrystalline in nature with a high (112) predominant orientation at $2{\theta}{\sim}26.8^{\circ}$. The carrier concentration, mobility, resistivity and optical band gap of CZTSe thin films depending on the deposition conditions. Average energy band gap of the CZTSe thin films is about 1.3 eV.

  • PDF

근접셀렌화법을 의해 제조된 $Cu(In,Ga)Se_2$ 흡수층의 물성

  • Lee, Sang-Hwan;Seo, Jin-U;Lee, Eun-U;Park, Sun-Yong;Kim, U-Nam;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • Cu(In,Ga)Se2 (CIGS) 화합물 반도체를 기반으로 한 태양전지는 박막태양전지 기술 중 세계최고효율을 기록하고 있다. CIGS를 합성하는 방법은 동시증발법, 스퍼터링/셀렌화 등의 진공방식과 나노분말법, 전착법, 용액법 등의 비진공방식이 있으나, 현재까지 진공방식이 양산기술로서 완성도가 높은 것으로 알려져 있다. 특히 스퍼터링에 의한 전구체 박막 증착과 셀렌 분위기에서의 열처리 공정을 결합시킨 2단계 공정은 동시증발법에 비해 대면적 모듈 제조에 유리한 것으로 알려져 있다. 셀렌화 공정은 통상 반응성이 매우 높은 H2Se 기체를 이용하고 있으나, 부식성 및 안전성 문제를 해결하기 위해 추가적인 설비가 요구되므로 제조비용을 높이는 단점을 갖는다. 한편, Se 증기를 이용하면 안전성은 담보되나 낮은 반응성으로 인해 고온에서 장시간 열처리를 해야하는 문제를 안고 있다. 본 연구에서는 새로운 Se 증기를 사용하되 반응효율을 높일 수 있는 새로운 셀렌화 열처리방법을 제시하고자 한다. 기존의 Se 증기가 별도의 증발원을 이용하여 공급된 것과는 달리, 금속전구체 직상부에 Se이 코팅된 별도의 커버글라스를 위치시켜 Se의 손실을 최대한 억제하였다. Se 커버글라스가 밀착된 금속프리커서를 $200{\sim}600^{\circ}C$ 온도범위에서 열저항가열로 내부에서 열처리하였으며, 추가로 Se을 공급하지는 않았다. 이와 같은 방법 제조된 CIGS 박막의 물성을 X선회절법, 주사전자현미경 등으로 관찰하였으며, 예비실험결과 비교적 낮은 온도에서 chalcopyrite 상이 형성됨을 확인하였다. 근접셀렌화에 의해 제조된 CIGS 박막이 적용된 태양전지를 제조하여 셀렌화 공정변수에 따른 소자특성변화를 제시하고자 한다.

  • PDF

Study on electron beam treatment on $Cu_2Se$ thin films by DC sputtering method (DC sputter방식으로 제조된 $Cu_2Se$ 박막의 전자빔 처리에 따른 특성 연구)

  • Kwon, Hyuk;Kim, ChaeWoong;Jung, SeungChul;Kim, DongJin;Park, InSun;Jeong, ChaeHwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • 현재 태양전지시장에서 비중이 많은 실리콘 태양전지는 높은 효율에 비해 제조 단가가 비싸다는 단점을 가지고 있다. 이에 비해 칼코파라이트 구조의 $CuInSe_2$ (CIS)계 화합물은 직접 천이형 반도체로서 높은 광흡수 계수($1{\times}105cm-{\acute{e}1$)와 밴드갭 조절의 용이성 및 열적 안정성 등으로 인해 고효율 박막 태양전지용 광흡수층 재료로 많은 관심을 끌고 있다. CIS 계 물질에 속하는 Cu(InGa)$Se_2$ (CIGS) 태양전지의 경우 양산화에 sputtering방식사용하고 Showa Shell에서는 대면적 CIGS 모듈 효율 13.4%를 달성한 바 있다. 현재 CIGS는 열처리하는 방법으로 selenization 공정을 사용하는데 이 공정은 유독한 $H_2Se$ gas를 이용해야 한다는 점과 긴 시간 동안 열처리를 해야 하는 단점을 가지고 있다. 따라서 이러한 단점을 보완하기 위해 본 연구에서는 전자빔을 사용하여 후속 공정을 실시하였다. 전자빔을 사용할 경우 낮은 온도에서 precursor를 처리하며 짧은 시간에 공정이 끝난다는 장점이 있다. 본 연구에서는 sodalime glass위에 조성비(Cu 60.87% Se 38.66%)인 Cu_2Se$ target(4.002"${\times}0.123$") 을 DC sputter를 이용하여 DC power를 50W,100W를 주고 Working pressure를 20,15,10,5,3,1mtorr로 조절하여 증착하였다. 전자빔의 세기 조건을 3Kv, Rf power 200W, Ar 7sccm로 전자빔 조사 시간을 1,2,3,4,5min으로 늘려가며 최적화 실험 하였고 최적화된 조건으로 $Cu_2Se$ target에 조사 하였다. 박막의 특성평가는 전자빔 조사 전/후에 대해 XRD, SEM, XRF, Hall measurement, UV-VIS을 이용하여 분석평가를 하였다. 이 실험은 $Cu_2Se$상이 자라는 특성과 표면 상태에 따라 CIGS박막을 증착하였을 때 나타나는 효율 변화를 알아 보기위한 초기 공정 실험이다.

  • PDF

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

Composition Control of a Light Absorbing Layer of CuInSe2 Thin Film Solar Cells Prepared by Electrodeposition (전착법을 이용한 CuInSe2 박막태양전지 광활성층의 조성 조절)

  • Park, Young-Il;Kim, Donghwan;Seo, Kyungwon;Jeong, Jeung-Hyun;Kim, Honggon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • Thin light-active layers of the $CuInSe_2$ solar cell were prepared on Mo-coated sodalime glass substrates by one-step electrodeposition and post-annealing. The structure, morphology, and composition of $CuInSe_2$ film could be controlled by deposition parameters, such as the composition of metallic precursors, the concentration of complexing agents, and the temperature of post-annealing with elemental selenium. A dense and uniform Cu-poor $CuInSe_2$ film was successfully obtained in a range of parametric variation of electrodeposition with a constant voltage of -0.5 V vs. a Ag/AgCl reference electrode. The post-annealing of the film at high temperature above $500^{\circ}C$ induced crystallization of $CuInSe_2$ with well-developed grains. The KCN-treatment of the annealed $CuInSe_2$ films further induced Cu-poor $CuInSe_2$ films without secondary phases, such as $Cu_2Se$. The structure, morphology, and composition of $CuInSe_2$ films were compared with respect to the conditions of electrodeposition and post-annealing using SEM, XRD, Raman, AES and EDS analysis. And the conditions for preparing device-quality $CuInSe_2$ films by electrodeposition were proposed.