• Title/Summary/Keyword: Selenide

Search Result 86, Processing Time 0.027 seconds

Colloidal Synthesis of Octahedral Shaped PbSe Nanocrystals from Lead Oleate and Se : Temperature Effect

  • Gokarna, Anisha;Jun, Ki-Won;Khanna, P.K.;Baeg, Jin-Ook;Seok, Sang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1803-1806
    • /
    • 2005
  • Formation of octahedral shaped PbSe quantum dots at higher synthesis temperature is being reported in this paper. The synthesis includes the reaction between lead oleate and trioctylphosphine selenide under inert gas conditions to produce PbSe. TEM, SEM, XRD and EDS were used to characterize the samples. The SEM exhibited the formation of spherical shaped nanocrystals at temperature below 140 ${^{\circ}C}$ and octahedral shaped nanoparticles at higher temperatures. Moreover, the TEM also showed the well resolved (111) lattice fringes proving that the nanocrystals were crystalline in nature. Synthesis of highly pure PbSe nanocrystals was another interesting aspect of this research.

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

Electrochemically Fabricated Alloys and Semiconductors Containing Indium

  • Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.95-115
    • /
    • 2012
  • Although indium (In) is not an abundant element, the use of indium is expected to grow, especially as applied to copper-indium-(gallium)-selenide (CI(G)S) solar cells. In future when CIGS solar cells will be used extensively, the available amount of indium could be a limiting factor, unless a synthetic technique of efficiently utilizing the element is developed. Current vacuum techniques inherently produce a significant loss of In during the synthetic process, while electrodeposition exploits nearly 100% of the In, with little loss of the material. Thus, an electrochemical process will be the method of choice to produce alloys of In once the proper conditions are designed. In this review, we examine the electrochemical processes of electrodeposition in the synthesis of indium alloys. We focus on the conditions under which alloys are electrodeposited and on the factors that can affect the composition or properties of alloys. The knowledge is to facilitate the development of electrochemical means of efficiently using this relatively rare element to synthesize valuable materials, for applications such as solar cells and light-emitting devices.

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.

Epitaxial Growth of Bi2Se3 on a Metal Substrate

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.306-306
    • /
    • 2011
  • Three dimensional(3D) topological insulators(TIs) of Bi binary alloys are characterized by a bulk energy gap with strong spin-orbit coupling and metallic surface states protected by time-reversal symmetry. It was reported that film forms of such materials were advantageous over bulk forms due to less defect density and better crystallinity. So far, the films have been prepared on several substrates including semiconductors and graphene. But, there were no studies on metal substrates. For electronic transport experiments and device applications, it is necessary to know epitaxial relation between TIs and metal electrodes. In this study, Atomically flat films of Bi2Se3 were grown on a Au(111) metal substrate by in-situ molecular beam epitaxy. Using home-built scanning tunneling microscope, we observed hexagonal atomic structures which corresponded to the outmost selenium atomic layer of Bi2Se3. Triangular-shaped defects known as Selenium vacancy were also found.

  • PDF

InSe 단일층의 도핑 가능성 탐색 연구

  • Sin, Yu-Ji;Lee, Ye-Seul
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.404-411
    • /
    • 2017
  • 이 논문에서는 2차원 화합물 반도체인 Indium Selenide monolayer의 효과적인 도펀트 원소를 탐색해보았다. 총 4가지 종류의 원소를 도핑시켜 계산을 했다. In 자리에 Mg과 Sn을 도핑시켜 각각 p-type과 n-type으로 만들고 Se 자리에 As과 Br을 도핑시켜 각각 p-type과 n-type으로 만들었다. 변화한 성질을 알아보기 위해 전자 구조를 분석하고 band structure와 DOS를 살펴보았다. P-type 같은 경우, Mg doped InSe는 shallow defect level이 생겨 좋은 반도체로 쓰일 수 있지만 As을 도핑한 InSe는 deep defect states가 생겼다. VBM에서 약 0.67 eV만큼 떨어져있는데 이 수치는 실험값과 비슷한 값이다. N-type 경우에는 Sn doped InSe는 deep defect states가 생겼고, CBM 아래로 약 0.08eV만큼 defect가 생긴 것이 실험값과 비슷하다. Br doped InSe는 Sn doped InSe보다 안정적인 n형 반도체가 될 수 있다.

  • PDF

Detection of Hydrofluoric Acid Using Cadmium Selenide Nanoparticles (카드뮴 셀레나이드 나노입자를 이용한 HF의 감지)

  • Kim, Sungjin
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.112-116
    • /
    • 2010
  • Prepared CdSe nanoparticles were systems, one of the most studied and useful nanostructures. Semiconductor quantum dots (QDs) have been the subject of much interest for both fundamental reseach and technical applications in recent years, due mainly to their strong size dependent properties and excellent chemical processibility. CdSe nanocrystals were synthesized by using sol-gel process. Synthesized CdSe quantum dots were studied to evaluate the optical, electronic and structural properties using UV-absorption, and photoluminescence (PL) measurement. Prepared CdSe nanoparticles were subjected to sense hydrofluoric acid. Photoluminescence was quenched upon adding of hydrofluoric acid.

Polyol Synthesis of Ruthenium Selenide Catalysts for Oxygen Reduction Reaction

  • Lee, Ki-Rak;Woo, Seong-Ihl
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3145-3150
    • /
    • 2010
  • Ruthenium catalysts modified by selenium have been introduced as alternative materials to Pt in Direct methanol fuel cells (DMFCs). RuSe nano-particles were synthesized on the Vulcan XC72R carbon supports via polyol method. The prepared catalysts were electrochemically and physically characterized by cyclic voltammetry (CV,) linear sweep voltammetry, methanol tolerance test, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energydispersive Spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Increasing the Se concentration up to 20 at % increased the electro-catalytic activity for the oxygen reduction. By increasing Se amount, Ru metallic form on the surface was increased. The $Ru_{80}Se_{20}$/C catalysts showed the highest oxygen reduction reaction (ORR) activity and outstanding methanol tolerant property in half cell tests as well as single cell test.

Effects of Ligand-exchanged Cadmium Selenide Nanoparticles on the Performance of P3HT:PCBM:CdSe Ternary System Solar Cells

  • Park, Eung-Kyu;Fu, Honghong;Choi, Mijung;Luan, Weiling;Kim, Yong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2321-2324
    • /
    • 2013
  • An improved hybrid solar cell was obtained by focusing on the effects of ligand for CdSe nanoparticles, in the active layers. The performance was compared by mixing nanoparticles capped with pyridine or oleic acid for the acceptor material into poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester based active layer. The solar cells with pyridine capped CdSe nanoparticles showed a power conversion efficiency of 2.96% while oleic acid capped CdSe nanoparticles showed 2.85%, under AM 1.5G illumination. Formation of percolation pathways for carrier transport and a reduction in the hopping event resulted in better performance of pyridine capped nanoparticles.