• 제목/요약/키워드: Selectivity Catalytic Reduction

검색결과 37건 처리시간 0.021초

Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • 제4권4호
    • /
    • pp.263-271
    • /
    • 2015
  • In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to $300mg/L\;NO_3-N$. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ${\geq}33mg\;catalyst/mg\;NO_3-N$. Maximum nitrogen selectivity (47%) was observed at $66mg\;catalyst/mg\;NO_3-N$, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg $NO_3{^-}-N/g_{catalyst}/h$. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.

중형 기공성 실리카 담체에 담지된 Pd-Cu 촉매를 활용한 수중 질산성 질소 저감 반응 (Catalytic Nitrate Reduction in Water over Mesoporous Silica Supported Pd-Cu Catalysts)

  • 김민성;정상호;이명석;이대원;이관영
    • 청정기술
    • /
    • 제19권1호
    • /
    • pp.65-72
    • /
    • 2013
  • 본 연구에서는 중형 기공성 실리카 담체인 MCM-41과 SBA-15를 활용하여 팔라듐과 구리를 담지한 후, 제조 촉매의 수중 질산성 질소 저감 반응 활성을 평가하였다. 순수 수소 공급 반응 조건에서, 질산성 질소의 농도는 반응 시간에 따라 점차 저감되었지만, 반응기 내부에 높게 형성된 pH로 인해 질소의 선택도가 매우 낮은 문제점이 발견되었다. 이를 해결하기 위해 이산화탄소를 수소와 함께 공급하여 pH의 안정화를 도모하였고, 질소 선택도를 40% 가량 증가시켰다. 상기 두 반응 조건에서 모두 Pd-Cu/MCM-41가 Pd-Cu/SBA-15보다 높은 활성을 나타냈다. 이와 같이 수중 질산성 질소 저감 반응의 활성에 차이를 보이는 두 촉매에 대하여, 질소 흡-탈착, XRD, $H_2$-TPR, XPS 등과 같은 특성 분석을 수행하여 제조 촉매의 구조와 물성이 반응활성에 미치는 영향을 검토해보았다.

나노 크기의 타이타니아 담체를 활용한 Pd-Cu 촉매의 수중 질산성 질소 저감 반응에의 적용 (Catalytic Nitrate Reduction in Water over Nanosized TiO2 Supported Pd-Cu Catalysts)

  • 김민성;이지연;이관영
    • 청정기술
    • /
    • 제20권1호
    • /
    • pp.28-34
    • /
    • 2014
  • 본 연구에서는 나노 크기의 결정 구조를 가진 타이타니아 담체를 용매열합성법(solvothermal method)을 활용하여 합성한 후 팔라듐과 구리를 담지한 촉매를 제조하였다. 제조된 촉매를 수중 질산성 질소 저감 반응에 적용한 결과, 타이타니아 담체의 결정 크기가 반응 활성에 영향을 미치는 것이 확인되었다. 결정 크기가 작은 담체를 활용한 촉매가 더 빠른 속도로 질산성 질소를 저감하였지만, 반응 중 pH가 높게 형성되어 질소 선택도가 매우 낮은 현상을 보였다. 이를 해결하기 위해 pH 완충제인 이산화탄소를 공급하여 질소 선택도를 약 60% 증가시켰다. 상기에 언급한 촉매를 대상으로 질소 흡-탈착, X-ray diffraction (XRD), $H_2$-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) 등의 다양한 특성화 분석을 수행하여 촉매의 반응활성과 물성간의 상관관계에 대해 조사하였다.

Improvement in Catalytic Activity of Ag Catalyst via Simple Mixing with Carbon

  • Choun, Myounghoon;Baek, Ji Yun;Eom, Taehyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.331-335
    • /
    • 2019
  • In this study we investigate catalytic activity and selectivity of mixture of Ag and ketjenblack according to their ratios by product analysis and electrochemical experiments, such as cyclic voltammetry, linear sweep voltammetry and chronoamperometry. We reveal that catalytic activity toward CO2 reduction to CO is improved by simple mixing Ag nanoparticle and ketjenblack because addition of ketjenblack suppresses aggregation of Ag nanoparticles and brings increase in electrochemical active surface area. However, excess amount of ketjenblack rather inhibit the CO2 reduction to CO. These observations provide clues to develop highly active Ag catalyst or electrode toward electrochemical reduction of CO2.

선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구 (Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine)

  • 박윤용;송하철;안기주;심천식
    • 한국항해항만학회지
    • /
    • 제40권4호
    • /
    • pp.173-181
    • /
    • 2016
  • 2016년부터 배출통제지역(ECA : Emission Control Atea)을 운항하는 선박에 대하여 배출되는 NOx(질소산화물) 및 SOx(황산화물)의 배기량 감소규제가 강화되었다. 상기의 규제 물질 중 NOx를 제거하는 탈질장비 중 선택적 촉매 환원(SCR : Selectivity Catalytic Reduction) 시스템은 효율이 높고 상업적으로 많이 활용되고 있으나, 높은 온도에서 요소수가 활성화되는 단점이 있다. 이에 초미세기포를 이용하여 낮은 온도에서도 반응할 수 있는 요소수 및 요소수 활성화 기기를 개발하여 상기의 문제점들을 최소화 할 수 있도록 하였다. 또한 SCR 시스템의 효율성을 향상시키는 방안을 마련하기 위하여, ANSYS-CFX package를 이용한 전산유체역학(CFD : Computational fluid dynamics)기법을 사용하였다. Navier-Stokes 방정식을 해석의 지배방정식으로 적용하여 SCR 시스템의 점성유동해석 시뮬레이션을 수행하였다. SCR 시스템의 형상은 CATIA V5를 사용하여 3D 모델링을 하였고, SCR 시스템의 효율성을 비교하기 위해 요소수 분사 노즐의 위치를 요소수 분사 노즐은 배기관의 입구로부터 1/3, 1/2, 2/3로 변경하며 확인하였다. 또한, 노즐의 분사구 수가 SCR 시스템의 효율에 미치는 영향을 확인하기 위하여 분사구 수가 4, 6, 8개일 경우를 시뮬레이션 하여 비교 분석하였다. 시뮬레이션 결과 배기관 입구에 가까울수록, 분사구 수가 많을수록 효율이 향상됨을 확인하였다.

A Highly Efficient and Selective Nickel/Clay Catalyst for Liquid Phase Hydrogenation of Maleic Anhydride to Succinic Anhydride

  • Tian, Weiping;Guo, Shaofei;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1643-1646
    • /
    • 2012
  • Three Ni-based catalysts with different clay as support were prepared and tested in the hydrogenation of maleic anhydride, among which Ni/clay1 showed best activity and selectivity. Over Ni/clay1 catalyst prepared by impregnation method, 97.14% conversion of maleic anhydride and 99.55% selectivity to succinic anhydride were obtained at $180^{\circ}C$ under a pressure of 1 MPa. Catalytic activity was greatly influenced by the temperature and weighted hourly space velocity. Catalyst deactivation studies showed that this catalyst have a long life time, the yield of MA still higher than 90% even after a reaction time of 60 h. X-ray diffraction (XRD) and $H_2$ temperature programmed reduction (TPR) were use to investigate the properties of the catalyst. XRD and TPR studies showed that Ni was present as $Ni^{2+}$ on the support, which indicated that there was no elemental nickel ($Ni^0$) and $Ni_2O_3$ in the unreduced samples. The formation of Ni was strong impact on catalytic activity.

Gold/Copper Bi-Metallic Catalysts by Carbothermal Method for CO2 Reduction

  • Yoon, Hee-chan;Jung, Woo-bin;Jung, Hee-Tae
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2019년도 정기학술대회 발표논문집
    • /
    • pp.83-83
    • /
    • 2019
  • Increasing the CO2 concentration in the atmosphere induce high temperature and rising sea levels. So the technology that capture and reuse of the CO2 have been recently become popular. Among other methods, CRR(CO22 reduction reaction) is typical method of CO2 reusing. Electrocatalyst can show more higher efficiencies in CRR than photocatalyst because it doesn't use nature source. Nowadays, finding high efficient electrocatalyst by controlling electronic (affected by stoichiometry) and geometric (affected by atomic arrangement) factors are very important issues. Mono-atomic electro-catalyst has limitations on controlling binding energy because each intermediate has own binding energy range. So the Multi-metallic electro-catalyst is important to stabilize intermediate at the same time. Carbon monoxide(CO) which is our target product and important feedstock of useful products. Au is known for the most high CO production metal. With copper, Not only gold/copper has advantages which is they have FCC packing for easily forming solid solution regardless of stoichiometry but also presence of adsorbed CO on Cu promotes the desorption of CO on Au because of strong repulsion. And gold/copper bi-metal catalyst can show high catalytic activity(mass activity) although it has low selectivity relatively Gold. Actually, multi-metallic catalyst structure control method is limited in the solution method which is takes a lot of time. In here, we introduce CTS(carbo thermal shock) method which is using heat to make MMNP in a few seconds for making gold-copper system. This method is very simple and efficient in terms of time(very short reaction time and using carbon substrate as a direct working electrode) and increasing reaction sites(highly dispersed and mixing alloy structures). Last one is easy to control degree of mixing and it can induce 5 or more metals in one alloy system. Gold/copper by CTS can show higher catalytic activity depending on metal ratio which is altered easily by changing simple variables. The ultimate goals are making CO2 test system by CTS which can check the selectivity depending on metal types in a very short time.

  • PDF

고압조건에서 Sn-Zr계 촉매상에서 SO2 촉매환원 반응특성 (Reactivity of SO2 Catalytic Reduction over Sn-Zr Based Catalyst under High Pressure Condition)

  • 박정윤;박노국;이태진;백점인;류청걸
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.316-321
    • /
    • 2010
  • 본 연구에서는 고압조건에서 $SO_2$를 원소 황으로 전환하기 위한 촉매환원반응이 수행되었다. $SO_2$ 환원을 위한 촉매로 Sn-Zr계 금속복합산화물 촉매를 사용하였으며, 환원제로 CO가 사용되었다. 촉매환원반응성을 조사하기 위하여 반응온도, 반응물의 몰비([CO]/[$SO_2$]), 공간속도에 따른 $SO_2$ 전화율과 원소 황 수율 그리고 COS의 선택도를 상압조건과 20기압조건에서 비교되었다. 상압조건에서 $SO_2$ 전화율은 반응온도가 증가될수록 함께 증가되었으며, $CO/SO_2$ 몰비가 높을수록 증가되었다. 또한 $SO_2$ 전화율의 증가와 함께 COS의 선택도도 함께 증가되어, 원소 황 수율은 오히려 낮아졌다. 그러나 20 atm의 고압조건에서는 높은 $SO_2$ 전화율과 낮은 COS의 선택도가 얻어졌다. 이와 같은 결과는 높은 압력으로 인한 반응속도의 증가와 함께 생성된 원소 황이 응축되어 CO에 의한 COS 생성이 억제되었기 때문이라 판단된다. 이와 같은 결과로부터 $SO_2$ 촉매환원반응으로 높은 황 수율은 고압조건에서 더 유리하게 얻을 수 있다.

질산제조 플랜트 N2O 제거용 촉매기술: 적용위치별 기술옵션 (Catalytic Technologies for Nitric Acid Plants N2O Emissions Control: In-Duct-Dependent Technological Options)

  • 김문현
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.113-123
    • /
    • 2012
  • A unit emission reduction of nitrous oxide ($N_2O$) from anthropogenic sources is equivalent to a 310-unit $CO_2$ emission reduction because the $N_2O$ has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control $N_2O$ emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the $N_2O$ reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for $N_2O$ emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the $NH_3$ oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the $NO_2$ absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high de$N_2O$ performance and excellent water tolerance under such conditions. Consequently, each de$N_2O$ technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.

바나듐계 촉매상에서 암모니아를 이용한 질소산화물의 환원반응속도에 수분이 미치는 영향에 관한 연구 (Effect of Water on the Kinetics of Nitric Oxides Reduction by Ammonia over V-based Catalyst)

  • 김영득;정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.73-82
    • /
    • 2012
  • The main and side reactions of the three selective catalytic reduction (SCR) reactions with ammonia over a vanadium-based catalyst have been investigated using synthetic gas mixtures in the temperature range of $170{\sim}590^{\circ}C$. The three SCR reactions are standard SCR with pure NO, fast SCR with an equimolar mixture of NO and $NO_2$, and $NO_2$ SCR with pure $NO_2$. Vanadium based catalyst has no significant activity in NO oxidation to $NO_2$, while it has high activity for $NO_2$ decomposition at high temperatures. The selective catalytic oxidation of ammonia and the formation of nitrous oxide compete with the SCR reactions at the high temperatures. Water strongly inhibits the selective catalytic oxidation of ammonia and the formation of nitrous oxide, thus increasing the selectivity of the SCR reactions. However, the presence of water inhibits the SCR activity, most pronounced at low temperatures. In this study, the experimental results are analyzed by means of a dynamic one-dimensional isothermal heterogeneous plug-flow reactor (PFR) model according to the Eley-Rideal mechanism.