• Title/Summary/Keyword: Selective oxidation

Search Result 256, Processing Time 0.027 seconds

A selective formation of high-quality fully recessed oxide (양질의 FRO(fully recessed oxide)의 선택적 형성)

  • 류창우;심준환;이준희;이종현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.149-155
    • /
    • 1996
  • A new technique wasdeveloped which obtains selectively the htick fully recessed oxidized porous silicon layer (OPSL) with good dielectric property. The porous silicon layer was ocnverted to thick fully recessed oxide (FRO) with 3-step (1${\mu}$m, 1.5${\mu}$m, 1.8${\mu}$m) by multi-step thermal oxidation (after 400$^{\circ}$C, 1 hour by dry oxidation, 700$^{\circ}$C, 1 hour and then 1100$^{\circ}$C, 1 hour by wet oxidation). The breakdwon field of the FRO was about 2.5MV/cm and the leakage current was several pA ~ 100 pA in the range of 0 of 90 pF. The progress of oxidation of a porous silicon layer was studied by examining the infrared abosrption spectra. The refractive index (1.51) of the fRO, which was measured by ellipsometer, was comparable to that of the thermally grown silicon dioxide (1.46). The etching rate (1600${\AA}$/min) of the FRO was also almost equal to that of the thermal oxide.

  • PDF

Characterization of Enhanced CO Oxidation Activity by Alumina Supported Platinum Catalyst

  • Jo, Myung-Chan
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1071-1077
    • /
    • 2009
  • A novel pretreatment technique was applied to the conventional Pt/alumina catalyst to prepare for the highly efficient catalyst for the preferential oxidation of carbon monoxide in hydrogen-rich condition. Their performance was investigated by selective CO oxidation reaction. CO conversion with the oxygen-treated Pt/Alumina catalyst increased remarkably especially at the low temperature below $100^{\circ}C$. This result is promising for the normal operation of the proton exchange membrane fuel cell (PEMFC) without CO poisoning of the anode catalyst. XRD analysis results showed that metallic Pt peaks were not observed for the oxygen-treated catalyst. This implies that well dispersed small Pt particles exist on the catalyst. This result was continued by high resolution transmission electron microscopy (HRTEM) analysis. Consequently, it can be concluded that highly dispersed Pt nanoparticles could be prepared by the novel pretreatment technique and thus, CO conversion could be increased considerably especially at the low temperatures below $100^{\circ}C$.

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

  • Li, Yan;Chang, Jie;Ouyang, Yong;Zheng, Xianwei
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1654-1658
    • /
    • 2014
  • High value-added aromatic aldehydes (e.g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide ($H_2O_2$) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin ($Co(TPPS_4)$) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without $Co(TPPS_4)$. Moreover, a possible mechanism of HFBO oxidation using $Co(TPPS_4)/H_2O_2$ was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under $Co(TPPS_4)/H_2O_2$ system.

CMnAl TRIP Steel Surface Modification During CGL Processing

  • Gong, Y.F.;Lee, Y.R.;Kim,, Han-S.;Cooman, B.C.De
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2010
  • The mechanisms of selective oxidation of intercritically annealed CMnAl TRIP steels in a Continuous Galvanizing Line (GCL) were studied by cross-sectional observation of the surface and sub-surface regions by means of High Resolution Transmission Electron Microscopy (HR-TEM). The selective oxidation and nitriding of an intercritically annealed CMnAl TRIP steel in a controlled dew point 10%$H_2+N_2$ atmosphere resulted in the formation of c-xMnO.$MnO_2$ (1${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) particles on the steel surface. Single crystal c-xMnO.$SiO_2$ ($2{\leq}x{\leq}4$) oxide particles were also observed on the surface. A thin film of crystalline c-xMnO.$SiO_2$ (2${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) was present between these particles. In the sub-surface region, internal oxidation, nitriding and intermetallic compound formation were observed. In the first region, large crystalline c-xMnO.$SiO_2$ ($1{\geq}x{\geq}2$) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) oxides particles were present. In the second region, c-AlN particles were observed, and in a third region, small $MnAl_x$ (x>1) intermetallic compound particles were observed.

Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation

  • Kim, Se-Chul;Zhang, Ting;Park, Jin-Nam;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3331-3337
    • /
    • 2012
  • Ru-modified Pt nanoparticles of various sizes on platelet carbon nanofiber toward methanol oxidation were investigated in terms of particle size effect. The sizes of Pt nanoparticles, prepared by polyol method, were in the range of 1.5-7.5 nm and Ru was spontaneously deposited by contacting Pt nanoparticles with the Ru precursor solutions of 2 and 5 mM. The Ru-modified Pt nanoparticles were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The methanol oxidation activities of Ru-modified Pt nanoparticles, measured using cyclic voltammetry and chronoamperometry, revealed that when the Pt particle size was less than 4.3 nm, the mass specific activity was fairly constant with an enhancement factor of more than 2 at 0.4 V. However, the surface area specific activity was maximized on Pt nanoparticles of 4.3 nm modified with 5 mM Ru precursor solution. The observations were discussed in terms of the enhancement of poison oxidation by Ru and the population variation of Pt atoms at vertices and edges of Pt nanoparticles due to selective deposition of Ru on the facets of (111) and (100).