• 제목/요약/키워드: Selective methylation

검색결과 14건 처리시간 0.015초

마우스 유방암 모델에서 5-Aza-2'-deoxycytidine의 암줄기세포 유지 억제 효과 (5-Aza-2'-deoxycytidine Inhibits the Maintenance of Cancer Stem Cell in a Mouse Model of Breast Cancer)

  • 노경진;양인숙;김란주;김수림;박정란;정지윤;조성대;남정석
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1164-1169
    • /
    • 2009
  • 비정상적 DNA메칠화는 암 발생에 있어 중요한 역할을 한다. 최근 연구에 의하면 암줄기세포 유지에 있어 DNA과메칠화가 연관되어 있다고 보고하고 있다. 따라서 본 연구는 4T1 유방암 실험모델에서 demethylating agent인 AZA 처리에 따른 후성유전적 변화가 암줄기세포의 유지 및 증식에 있어 어떠한 영향을 미치는지 조사 하였다. 4T1 세포에서 AZA 처리에 따른 tumorsphere 형성이 감소 하는 것을 in vitro 실험을 통해 관찰 하였고, in vivo 실험에서는 줄기세포 조절 유전자들 (Oct-4, Nanog. Sox2)의 발현이 감소 되는 것을 확인 하였다. 본 연구 결과로 볼 때 4T1 유방암 실험모델에서 AZA에 의한 후성유전적 변화는 줄기세포 조절 유전자(SRG)들의 발현을 조절하면서 암줄기세포 특성을 변화시켜 암줄기세포의 증식 및 유지를 억제 할 것으로 사료된다. 향후 이러한 DNA 메칠화 억제를 항암치료에 응용하면, 암줄기세포를 파괴함으로써 암의 재발 및 악성화를 효과적으로 제어 할 수 있을 것으로 사료된다.

Molecular and Genomic Approaches on Nickel Toxicity and Carcinogenicity

  • Seo, Young-Rok;Kim, Byung-Joo;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.73-77
    • /
    • 2005
  • Nickel is the one of potent environmental, the occupational pollutants and the classified human carcinogens. It is a serious hazard to human health, when the metal exposure. To prevent human diseases from the heavy metals, it is seemingly important that understanding of how nickel exerts their toxicity and carcinogenic effect at a molecular and a genomic level. The process of nickel absorption has been demonstrated as phagocytosis, iron channel and diffusion. Uptaked nickel has been suggested to induce carcinogenesis via two pathways, a direct DNA damaging pathway and an indirect DNA damaging pathway. The former was originated from the ability of metal to generate Reactive Oxygen Species (ROS) and the reactive intermediates to interact with DNA directly. Ni-generated ROS or Nickel itself, interacts with DNAs and histones to cause DNA damage and chromosomal abnormality. The latter was originated from an indirect DNA damage via inhibition of DNA repair, or condensation and methylation of DNA. Cells have ability to protect from the genotoxic stresses by changing gene expression. Microarray analysis of the cells treated with nickel or nickel compounds, show the specific altered gene expression profile. For example, HIF-I (Hypoxia-Inducible Factor I) and p53 were well known as transcription factors, which are upregulated in response to stress and activated by both soluble and insoluble nickel compounds. The induction of these important transcription factors exert potent selective pressure and leading to cell transformation. Genes of metallothionein and family of heat shock proteins which have been known to play role in protection and damage control, were also induced by nickel treatment. These gene expressions may give us a clue to understand of the carcinogenesis mechanism of nickel. Further discussions on molecular and genomic, are need in order to understand the specific mechanism of nickel toxicity and carcinogenicity.

조직.기관의 분화와 유전자 발현의 조절, 최근의 진보 (Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression)

  • Harn, Chang-Yawl
    • 식물조직배양학회지
    • /
    • 제24권1호
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

약산성 다당의 선택적 분해 과정에서 얻어진 특이당 함유 Oligo당의 구조적 분석 (Structural Analysis of the Unusual Sugar-Containing Oligosaccharides Formed by the Selective Cleavage of Weakly Acidic Polysaccharide)

  • 신광순;이호
    • 한국식품과학회지
    • /
    • 제29권6호
    • /
    • pp.1105-1112
    • /
    • 1997
  • 약산성 다당 GL-4IIb2'에 대해 연속적 부분 산가수 분해 과정을 거쳐, 2종의 oligo당 획분 PA-2' 및 PA-1-III를 분리하고 그들의 구조분석을 행하였다. PA-2'는 주요 구성당으로 Rha 와 특이당 Kdo를 동일한 비율로 함유하고 있었으며, permethylated oligosaccharide-alditol로 전환시켜, GC-MS로 분석한 결과, m/z 189$(bA_1)$및 m/z 308 $(aJ_2)$에서 6-deoxyhexose와 Kdo에 기인하는 fragment ion이 관찰되었다. 이 peak는 m/z 162에서 특징적인 ion을 나타낸 반면 m/z 177 ion이 관찰되지 않음으로써 Kdo의 C4위치가 아닌 C5위치가 치환되어 있음을 알 수 있었다. 한 methyl화 분석 결과, PA-2'은 환원말단 Rhap와 5-substituted Kdo가 높은 비율로 검출되었으며 환원 형태의 PA-2'를 대상으로 $^1M-NMR$ 분석을 하였을 때 ${\delta}$ 5.09 ppm에서 ${\alpha}-L-Rha$의 anomeric proton에 기인한 단일 signal이 관찰되었다. 이상의 결과로 부터 PA-2'는 주로 ${\alpha}-L-Rhap-(1{\rightarrow}5)-Kdo$로 구성되었다는 사실을 알 수 있었다 한편. PA-1-III는 소량의 Ara 믹 Dha와, 다량의 Rha 및 Kdo가 주요 구성당으로 나타났으며, PA-1-III 획분의 permethylated oligosaccharide-alditol 유도체는 GC상에서 3개의 peak (1P, 2P 및 3P)로 분리되었다. 이들의 MS 분석 결과, 높은 비율로 검출된 1P는 $Rhap-(1{\rightarrow}5)-Kdo$의 구조로 나타났으며 반면 낮은 비율의 2P및 3P는 $Araf-(1{\rightarrow}5)-Dha$의 동일구조를 갖는 것으로 확인되었는데 이는 Dha의 carbonyl 환원과정 중 생성된 epimer로 판단되었다.

  • PDF