• Title/Summary/Keyword: Selective methylation

Search Result 14, Processing Time 0.025 seconds

5-Aza-2'-deoxycytidine Inhibits the Maintenance of Cancer Stem Cell in a Mouse Model of Breast Cancer (마우스 유방암 모델에서 5-Aza-2'-deoxycytidine의 암줄기세포 유지 억제 효과)

  • Nho, Kyoung-Jin;Yang, In-Sook;Kim, Ran-Ju;Kim, Soo-Rim;Park, Jeong-Ran;Jung, Ji-Youn;Cho, Sung-Dae;Nam, Jeong-Seok
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1164-1169
    • /
    • 2009
  • Aberrant DNA methylation plays an important role in the development of cancer. It has been reported recently that DNA hypermethylation is involved in the maintenance of cancer stem cells. The present study was designed to test the hypothesis that the demethylating agent, 5-aza-2'-deoxycytidine (AZA), can inhibit the potential for maintenance of cancer stem cells. To validate this hypothesis, we used 4T1 syngeneic mouse models of breast cancer. The AZA pre-treated 4T1 cells showed a dramatic inhibition of tumorsphere formation, compared to their counterparts in vitro. In addition, the AZA treatment significantly suppressed the expression of stem regulator genes, such as oct-4, nanog and sox2, compared to counterparts in vivo. Therefore, selective inhibition of DNA methylation may be useful for stem-specific cancer therapy.

Molecular and Genomic Approaches on Nickel Toxicity and Carcinogenicity

  • Seo, Young-Rok;Kim, Byung-Joo;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2005
  • Nickel is the one of potent environmental, the occupational pollutants and the classified human carcinogens. It is a serious hazard to human health, when the metal exposure. To prevent human diseases from the heavy metals, it is seemingly important that understanding of how nickel exerts their toxicity and carcinogenic effect at a molecular and a genomic level. The process of nickel absorption has been demonstrated as phagocytosis, iron channel and diffusion. Uptaked nickel has been suggested to induce carcinogenesis via two pathways, a direct DNA damaging pathway and an indirect DNA damaging pathway. The former was originated from the ability of metal to generate Reactive Oxygen Species (ROS) and the reactive intermediates to interact with DNA directly. Ni-generated ROS or Nickel itself, interacts with DNAs and histones to cause DNA damage and chromosomal abnormality. The latter was originated from an indirect DNA damage via inhibition of DNA repair, or condensation and methylation of DNA. Cells have ability to protect from the genotoxic stresses by changing gene expression. Microarray analysis of the cells treated with nickel or nickel compounds, show the specific altered gene expression profile. For example, HIF-I (Hypoxia-Inducible Factor I) and p53 were well known as transcription factors, which are upregulated in response to stress and activated by both soluble and insoluble nickel compounds. The induction of these important transcription factors exert potent selective pressure and leading to cell transformation. Genes of metallothionein and family of heat shock proteins which have been known to play role in protection and damage control, were also induced by nickel treatment. These gene expressions may give us a clue to understand of the carcinogenesis mechanism of nickel. Further discussions on molecular and genomic, are need in order to understand the specific mechanism of nickel toxicity and carcinogenicity.

Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression (조직.기관의 분화와 유전자 발현의 조절, 최근의 진보)

  • Harn, Chang-Yawl
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

Structural Analysis of the Unusual Sugar-Containing Oligosaccharides Formed by the Selective Cleavage of Weakly Acidic Polysaccharide (약산성 다당의 선택적 분해 과정에서 얻어진 특이당 함유 Oligo당의 구조적 분석)

  • Shin, Kwang-Soon;Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1105-1112
    • /
    • 1997
  • By sequential degradation using partial acid hydrolysis of a weakly acidic polysaccharide (GL-4IIb2'), two acidic oligosaccharide fragments, PA-2' and PA-1-III were isolated and their structures were characterized. PA-2' consisted of almost equal proportion of a rhamnose (Rha) and an unusual sugar, 3-deoxy-D-manno-2-octurosonic acid (Kdo). When permethylated oligosaccharide-alditol derived from PA-2' was analyzed by GC-MS, the peak gave the fragment ions at m/z 189 $(bA_1,\;6-deoxyhexose)$ and at m/z 308 $(aJ_2,\;alditol\;from\;Kdo)$. The peak also gave the characteristic ion at m/z 162 but it did not give the fragment ion at m/z 177, suggesting that Kdo is substituted at C5 but not at C4. Methylation analysis also indicated that PA-2' was composed mainly of terminal Rhap and 5-substituted Kdo. When the reduced product from PA-2' was analyzed by $^1H-NMR$, it gave a signal at 5.09 ppm due to an anomeric proton of ${\alpha}-L-Rha$. These results indicated that PA-2' mainly contained ${\alpha}-L-Rhap-(1{\rightarrow}5)-Kdo$. On the other hand, PA-1-III mainly comprised Rha and Kdo in addition to small proportions of arabinose (Ara) and 3-deoxy-D-lyxo-2-heptulosaric acid (Dha). MS analysis of permethylated oligosaccharide-alditols from PA-1-III suggested that the major peak 1P was $Rhap-(1{\rightarrow}5)-Kdo$ whereas the minor peaks 2P and 3P possessed $Araf-(1{\rightarrow}5)-Dha$ unit and these peaks were produced as epimers during reduction of carbonyl groups in Dha.

  • PDF