• Title/Summary/Keyword: Selective inhibitor

Search Result 399, Processing Time 0.029 seconds

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

The Effects of Ginsenoside Rg3 as a Potent Inhibitor of Ca2+ Channels and NMDA-gated Channels in the Peripheral and Central Nervous Systems (말초 및 중추신경계에서 칼슘채널 및 NMDA 매개 채널의 억제제로의 진세노사이드 Rg3의 효과)

  • Rhim, Hye-Whon
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.120-128
    • /
    • 2003
  • Alternative medicines such as herbal products are increasingly being used for preventive and therapeutic purposes. Ginseng is the best known and most popular herbal medicine used worldwide. In spite of some beneficial effects of ginseng on the nervous system, little scientific evidence shows at the cellular level. In the present study, I have examined the direct modulation of ginseng total saponins and individual ginsenosides on the activation of $Ca^{2+}$ channels and NMDA-gated channels in cultured rat dorsal root ganglion (DRG) and hippocampal neurons, respectively. In DRG neurons, application of ginseng total saponins suppressed high-voltage-activated $Ca^{2+}$ channel currents and ginsenoside Rg$_3$, among the 11 ginsenosides tested, produced the strongest inhibition on $Ca^{2+}$ channel currents. Occlusion experiments using selective $Ca^{2+}$ channel blockers revealed that ginsenoside Rg$_3$ could modulate L-, N-, and P/Q-type currents. In addition, ginsenoside Rg$_3$ also proved to be an active component of ginseng actions on NMDA receptors in cultured hippocampal neurons. Application of ginsenoside Rg$_3$ suppressed NMDA-induced [Ca$^{2+}$]$_{i}$ increase and -gated channels using fura-2-based digital imaging and patch-clamp techniques, respectively. These results suggest that the modulation of $Ca^{2+}$ channels and NMDA receptors by ginsenoside Rg$_3$ could be part of the pharmacological basis of ginseng actions in the peripheral and central nervous systems.ous systems.

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

수컷 흰쥐 생식기관에서의 5-HT 수용체 아형의 유전자 발현과 조절

  • Lee, Jong-Hwa;Lee, Gyeong-Yeop;Jeon, Yun;Lee, Seong-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.65-65
    • /
    • 2003
  • Serotonin(5-hydroxytriptamine, 5-HT)은 biogenic amlne류 신경전달물질로써, 다양한 생리조절활성을 갖고있다. 생식과 관련된 5-HT 기능으로 최근 사정 기능의 조절 가능성이 제시되었는데, 항우울제로 흔히 사용되는 selective serotonin reuptake inhibitor(SSRI) 계 약물을 장기 투여할 때 Premature ejaculation이 개선된다는 임상적인 증거들이 보고되었다. 본 연구는 수컷 흰쥐를 사용하여 생식기관, 특히 사정과 관계되는 기관들에서의 5-HT 수용체 아형들의 유전자 발현 여부와 그 조절 기작을 조사하였다. 흰쥐 수컷의 생식장기들인 고환, 부정소, 정관, 정낭에서 사정현상에 관여하리라 추정되는 세로토닌 수용체 아형들(type 1A, 1B, 2C)의 유전자 발현을 RT-PCR과 Southern blot으로 확인하였다. SSRI(sertraline)을 흰쥐에 매일 투여하는 모델(25mg/개체, 2주간)에서 1A 아형의 발현의 경우 정낭에서는 감소하였으나 정관에서는 증가하였고, 1B 아형의 발현은 두 장기에서 공히 증가하였다. 고환 제거후 testosterone(T) 보충 실험 모델을 사용한 실험에서, 정낭에서의 1A와 1B 발현은 T 보충에 의해 감소하였고, 정관에서는 큰 변화가 없었다. 한편 고환, 정낭과 정관에서의 세로토닌 수용체 아형 1A와 1B의 발현은 사춘기의 개시와 함께 증가하였다가 이후 점차 감소하는 경향을 보였다. 본 연구 결과는 사정 현상에 있어서 말초성 세로토닌 시스템이 중요한 역할을 담당할 가능성을 시사하는 것으로써, (i) 고등 포유동물에서의 사정 기작의 조절에 대한 과학적인 이해를 증진시키고, (ⅱ) 세로토닌 수용체 아형간의 특이한 발현과 작용에 대한 이해를 통해 보다 효과적인 사정 부전 치료법 개발을 시도할 수있고, (ⅲ) ontogeny와 sex steroid 의존성에 관련된 연구 시도는 노화와 관련된 사정능력의 변화와 같은 남성과학 분야로의 접목을 기할 수 있다고 사료된다.

  • PDF

Regulation of Nicotinic Acetylcholine Receptor by Tyrosine Kinase in Autonomic Major Pelvic Ganglion Neurons

  • Kim, Dae-Ran;Ahn, Sung-Wan;Park, Kyu-Sang;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • It is widely known that protein tyrosine kinases (PTKs) are involved in controlling many biological processes such as cell growth, differentiation, proliferation, survival and apoptosis. An $\alpha3\beta4$ subunit combination acts as a major functional acetylcholine receptor (nAChRs) in male rat major pelvic ganglion (MPG) neurons, and their activation induces fast inward currents and intracellular calcium increases. Recently it has been reported that the activity of acetylcholine receptors (AChRs) in some neurons can be negatively regulated by PTKs. However, the exact mechanism of regulation of nAChRs by PTKs is poorly understood. Therefore, we examined the potential role particular in nAChR by PTK using electrophysiology and calcium imaging in male rat MPG neurons. ACh induced inward currents and $(Ca^{2+})_i$ increases in MPG neurons, concomitantly. These responses were inhibited by more than 90% in $Na^+$- or $Ca^{2+}$- free solution. $\alpha$-conotoxin AuIB, a selective $\alpha3\beta4$ nAChR blocket, inhibited ACh-induced inward currents. Genistein (10 $\mu$M), a broad-spectrum tyrosine kinase inhibitor, markedly decreased ACh-induced currents and $Ca^{2+}$ transients, whereas 10 $\mu$M genistin, an inactive analogue, had little effect. Overall these data suggest that the activities of $\alpha3\beta4$ AChRs in MPG neurons are positively regulated by PTK. In conclusion, trosine kinase may be one of the key factors in the regulation of $\alpha3\beta4$ nAChRs in rat MPG neurons, which may play an important roles in the autonomic neuronal function such as synaptic transmission, autonomic reflex, and neuronal plasticity.

  • PDF

Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo;KIM Hwa-Jung;LEE Hi Bahl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2005
  • Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.

The Potential Usefulness of Magnetic Resonance Guided Focused Ultrasound for Obsessive Compulsive Disorders

  • Jung, Hyun Ho;Chang, Won Seok;Kim, Se Joo;Kim, Chan-Hyung;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.4
    • /
    • pp.427-433
    • /
    • 2018
  • Obsessive compulsive disorder is a debilitating condition characterized by recurrent obsessive thoughts and compulsive reactions. A great portion of the obsessive compulsive disorder (OCD) patients are managed successfully with psychiatric treatment such as selective serotonin-reuptake inhibitor and cognitive behavioral psychotherapy, but more than 10% of patients are remained as non-responder who needs neurosurgical treatments. These patients are potential candidates for the neurosurgical management. There had been various kind of operation, lesioning such as leucotomy or cingulotomy or capsulotomy or limbic leucotomy, and with advent of stereotaxic approach and technical advances, deep brain stimulation was more chosen by neurosurgeon due to its characteristic of reversibility and adjustability. Gamma knife radiosurgery are also applied to make lesion targeting based on magnetic resonance (MR) imaging, but the complication of adverse radiation effect is not predictable. In the neurosurgical field, MR guided focused ultrasound has advantage of less invasiveness, real-time monitored procedure which is now growing to attempt to apply for various brain disorder. In this review, the neurosurgical treatment modalities for the treatment of OCD will be briefly reviewed and the current state of MR guided focused ultrasound for OCD will be suggested.

Selonsertib Inhibits Liver Fibrosis via Downregulation of ASK1/MAPK Pathway of Hepatic Stellate Cells

  • Yoon, Young-Chan;Fang, Zhenghuan;Lee, Ji Eun;Park, Jung Hee;Ryu, Ji-Kan;Jung, Kyung Hee;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • Liver fibrosis constitutes a significant health problem worldwide due to its rapidly increasing prevalence and the absence of specific and effective treatments. Growing evidence suggests that apoptosis-signal regulating kinase 1 (ASK1) is activated in oxidative stress, which causes hepatic inflammation and apoptosis, leading to liver fibrogenesis through a mitogen-activated protein kinase (MAPK) downstream signals. In this study, we investigated whether selonsertib, a selective inhibitor of ASK1, shows therapeutic efficacy for liver fibrosis, and elucidated its mechanism of action in vivo and in vitro. As a result, selonsertib strongly suppressed the growth and proliferation of hepatic stellate cells (HSCs) and induced apoptosis by increasing Annexin V and TUNEL-positive cells. We also observed that selonsertib inhibited the ASK1/MAPK pathway, including p38 and c-Jun N-terminal kinase (JNK) in HSCs. Interestingly, dimethylnitrosamine (DMN)-induced liver fibrosis was significantly alleviated by selonsertib treatment in rats. Furthermore, selonsertib reduced collagen deposition and the expression of extracellular components such as α-smooth muscle actin (α-SMA), fibronectin, and collagen type I in vitro and in vivo. Taken together, selonsertib suppressed fibrotic response such as HSC proliferation and extracellular matrix components by blocking the ASK1/MAPK pathway. Therefore, we suggest that selonsertib may be an effective therapeutic drug for ameliorating liver fibrosis.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Phytoestrogen-Induced Phosphorylation of MAP Kinase in Osteoblasts is Mediated by Membrane Estrogen Receptor

  • Park, Youn-Hee;Park, Hwan-Ki;Lee, Hyo-Jin;Park, Sun-Mu;Choi, Sang-Won;Lee, Won-Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.165-169
    • /
    • 2002
  • We have previously demonstrated that phytoestrogens isolated from safflower seeds significantly attenuated bone loss in ovariectomized rats, and directly stimulated proliferation and differentiation of cultured osteoblastic cells. In an attempt to elucidate underlying cellular mechanisms, in the present study we investigated effects of $17{\beta}-estradiol\;(E_2)$ and phytoestrogens such as matairesinol and acacetin, a type of lignan and flavonoid, respectively, on activation of mitogen activated protein (MAP) kinases, extracellular signal-regulated kinase 1 (ERK1) and ERK2, in cultured osteoblastic ROS 17/2.8 cells. Western blot analysis with anti-MAP kinase antibody showed that a wide range concentrations $(10^{-14}\;to\;10^{-6}\;M)\;of\;E_2$ as well as both phytoestrogens induced rapid and transient activation of ERK1/2 through phosphorylation within minutes. Maximum activation of MAP kinases by $E_2$ and phytoestrogens were observed at 10 and 15 min, respectively. $E_2-induced$ phosphorylation of ERK1/2 returned to the control level at 30 min, whereas phytoestrogen-induced phosphorylation was maintained at high level until 30 min. PD-98059, a highly selective inhibitor of MAP kinase, prevented phosphorylation of ERK1/2 in the cells treated either with $E_2$ or phytoestrogens. To examine a possible involvement of estrogen receptor in the activation process of MAP kinase, Western blot analysis was performed in the presence and absence of the estrogen receptor antagonists, ICI 182,780 and tamoxifen. These antagonists blocked MAP kinase phosphorylation induced not only by $E_2,$ but also by the phytoestrogens. To the best our knowledge, this study is the first to demonstrate that phytoestrogens such as flavonoid and lignan extracted from safflower seeds produce a rapid activation of MAP kinase, at least partially via membrane estrogen receptor of the cultured osteoblastic cells.