• 제목/요약/키워드: Selective immobilization of protein

검색결과 8건 처리시간 0.025초

나이트로벤젠다이아조늄 양이온의 화학 및 전기화학 반응을 이용한 실리콘 표면상으로의 단백질 고정 (Immobilization of Proteins on Silicon Surfaces Using Chemical and Electrochemical Reactions of Nitrobenzenediazonium Cations)

  • 김규원;하크 알-몬술;강현주
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.70-74
    • /
    • 2010
  • 전기화학 반응을 이용한 실리콘 표면상으로의 단백질 고정을 연구하였다. 이를 위해 Nitrobenzendiazonium(NiBD) 양이온을 화학적 환원반응을 통해 수식하고 수식된 실리콘 표면을 전기화학적으로 다시 환원시켜 나이트로 기능기를 일차아민 기능기로 활성화하여 단백질 고정에 이용하였다. 활성화 된 표면에 금 나노입자를 고정하여 일차 아민 생성을 확인하였다. 또한 이 방법을 응용하여 실리콘 나노선 어레이 중 선택된 나노선 만을 활성화하고 단백질을 선택적으로 고정하는 연구를 수행하였다. 이 연구를 통하여 NiBD 양이온의 화학 및 전기화학 반응이 실리콘 나노선 표면으로 단백질의 선택적 고정화에 유용하게 사용될 수 있음을 보였다.

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

Microcontact Printing of Biotin for Selective Immobilization of Streptavidin-fused Proteins and SPR Analysis

  • Lee, Sang-Yup;Park, Jong-Pil;Lee, Seok-Jae;Park, Tae-Jung;Lee, Kyung-Bok;Park, Insung S.;Kim, Min-Gon;Chung, Bong-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, a simple procedure is described for patterning biotin on a glass substrate and then selectively immobilizing proteins of interest onto the biotin-patterned surface. Microcontact printing (CP) was used to generate the micropattern of biotin and to demonstrate the selective immobilization of proteins by using enhanced green fluorescent protein (EGFP) as a model protein, of which the C-terminus was fused to a core streptavidin (cSA) gene of Streptomyces avidinii. Confocal fluorescence microscopy was used to visualize the pattern of the immobilized protein (EGFP-cSA), and surface plasmon resonance was used to characterize biological activity of the immobilized EGFP-cSA. The results suggest that this strategy, which consists of a combination of $\mu$CP and cSA-fused proteins. is an effective way for fabricating biologically active substrates that are suitable for a wide variety of applications. one such being the use in protein-protein assays.

Nano-Scale Immobilization of Antibody for the Construction of Immunosensor

  • Cho, Il-Hoon;Paek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.701-705
    • /
    • 2003
  • Performance of an immunosensor can usually be assessed in terms of its analytical sensitivity and specificity. Sensitivity, i.e., the detection limit of analyte, is particularly determined by the amount of analyte molecules bound to the capture antibody immobilized onto a solid surface. In order to increase the binding complexes, we have investigated an immobilization method of antibody allowing for a molecular arrangement of the protein on a selective surface of a nano-patterned solid substrate. This has not been accomplished only by a surface treatment with a chemical, but also by fragmentation of immunoglobulin. Such approach would offer a protocol of antibody immobilization for the construction of nano-immunosensor and eventually improve the sensitivity of detection.

  • PDF

Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung;Park, Jong-Pil;Lee, Seok-Jae;Hong, Hyo-Jeong;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.173-177
    • /
    • 2006
  • In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

Fluorescence Immunoassy of HDL and LDL Using Protein A LB Film

  • Choi, Jeong-Woo;Park, Jun-Hyo;Lee, Woo-Chang;Oh, Byung-Keun;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.979-985
    • /
    • 2001
  • A fluorometric detection technique for HDL (High Density Lipoprotein) and LDL (Low Density Lipoprotein) was developed for application in a fiber-optic immunosensor using a protein A Langmuir-Blodgget (LB) film. For the fluorescence immunoassay, antibodies specific to HDL or LDL were imobilied on the protein A LB film, and a fluorescence amplification method was developed to overcome their weak fluorescence. The deposition of protein A using the LB technique was monitored using a surface pressure-are $({\pi}-A)$ curve, and the antibody immobilization of the protein A LB film was experimentally verified. The immobilized antibody was used to separate only HDL and LDL from a sample, then the fluorescence of he separated HDL or LDL was amplified. The amount of LDL or HDL was measured using the developed fiber optic fluorescence detection system. The optical properties resulting from the reaction of HDL or LDL with o-phtaldialdehyde, detection range, response time, and stability of the immunoassay were all investigated. The respective detection ranges for HDL and LDL were sufficient to diagnose the risk of coronary heart disease. The amplification step increased the sensitivity, while selective separation using the immobilized antibody led to linearity in the sensor signal. The regeneration of the antibody-immobilized substrate could produce a stable and reproducible immunosensor.

  • PDF

An Aptamer-Based Electrochemical Sensor That Can Distinguish Influenza Virus Subtype H1 from H5

  • Lee, Jin-Moo;Kim, JunWon;Ryu, Ilhwan;Woo, Hye-Min;Lee, Tae Gyun;Jung, Woong;Yim, Sanggyu;Jeong, Yong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.2037-2043
    • /
    • 2017
  • The surface protein hemagglutinin (HA) mediates the attachment of influenza virus to host cells containing sialic acid and thus facilitates viral infection. Therefore, HA is considered as a good target for the development of diagnostic tools for influenza virus. Previously, we reported the isolation of single-stranded aptamers that can distinguish influenza subtype H1 from H5. In this study, we describe a method for the selective electrical detection of H1 using the isolated aptamer as a molecular probe. After immobilization of the aptamer on Si wafer, enzyme-linked immunosorbent assay (ELISA) and field emission scanning electron microscopy (FE-SEM) showed that the immobilized aptamer bound specifically to the H1 subtype but not to the H5 subtype. Assessment by cyclic voltammetry (CV) also demonstrated that the immobilized aptamer on the indium thin oxide-coated surface was specifically bound to the H1 subtype only, which was consistent with the ELISA and FE-SEM results. Further measurement of CV using various amounts of H1 subtype provided the detection limit of the immobilized aptamer, which showed that a nanomolar scale of target protein was sufficient to produce the signal. These results indicated that the selected aptamer can be an effective probe for distinguishing the subtypes of influenza viruses by monitoring current changes.