• Title/Summary/Keyword: Selective control

Search Result 992, Processing Time 0.03 seconds

Application of the H Infinity Control Principle to the Sodium Ion Selective Gating Channel on Biological Excitable Membranes

  • Hirayama, Hirohumi
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-38
    • /
    • 2004
  • We proposed the infinity control principle to evaluate the Biological function. The H infinity control was applied to the Sodium (Na) ion selective gating channel on the excitable cellular membrane of the neural system. The channel opening, closing and inactivation processes were expressed by movements of three gates and one inactivation blocking particle in the channel pore. The rate constants of the channel state transition were set to be voltage dependent. The temporal changes in amounts per unit membrane area of the channel states were expressed by means of eight differential equations. The biochemical mimetic used to complete the Na ion selective channel was regarded as noise. The control inputs for ejecting the blocking particle with plugging in the channel pore were set for the active transition from inactivated states to a closed or open state. By applying the H infinity control, we computed temporal changes in the channel states, observers, control inputs and the worst case noises. The present paper will be available for evaluating the noise filtering function of the biological signal transmission system.

A High-Speed Dual-Modulus Prescaler Using Selective Latch Technique (Selective Latch Technique을 이용한 고속의 Dual-Modulus Prescaler)

  • 김세엽;이순섭김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.779-782
    • /
    • 1998
  • This paper describes a high-speed Dual-modulus Prescaler (DMP) for RF mobile communication systems with pulse remover using selective latch technique. This circuit achieves high speed and low power consumption by reducing full speed flip-flops and using a selective latch. The proposed DMP consists of only one full speed flip-flop, a selective latch, conventional flip-flops, and a control gate. In order to ensure the timing of control signal, duty cycle problem and propagation delay must be considered. The failling edgetriggered flip-flops alleviate the duty cycle problem andthis paper shows that the propagation delay of control signal doesn't matter. The maximum operating frequency of the proposed DMP with 0.6um CMOS technology is up to 2.2㎓ at 3.3V power supply and the circuit consumes 5.24mA.

  • PDF

Correlation Between Selective Motor Control Test and Functional Performance Evaluation in Children With Spastic Cerebral Palsy (선택적 운동 조절 척도와 기능적 수행도 평가 간의 상관: 경직형 뇌성마비 아동을 대상으로)

  • Park, Eun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.232-239
    • /
    • 2012
  • The purpose of this study was to investigate the relationship among functional evaluation systems, the Selective Motor Control Scale (SMC scale), the Gross Motor Function Classification System (GMFCS), the Gross Motor Function Measure (GMFM) and Activities of daily living in children with spastic cerebral palsy and to provide the foundation data about SMC scle for evaluation system of abilities of selective motor control in children with spastic cerebral palsy. For this, sixty eight children with spastic cerebral palsy were participated in this study. The children were evaluated by using the SMC scale for their selective motor control ability and by using the GMFCS and GMFM for their gross motor function. The activities of daily living were assessed by using the Functional Independence Measure of Children (WeeFIM). There were a significant correlation between the SMC scale and the GMFCS (r = -.485, p < .05). The good correlation between the SMC scale and GMFM was found (r = .482, p < .05). The activities of daily living were not a significant correlation with SMC scale (r = .019, p > .05). The SMC scale in practice will provide usefulness for assessment of abilities of selective motor control in children with spastic cerebral palsy.

Computer Generated Hologram for Beam Control of LCOS based Wavelength Selective Switch (LCOS기반의 파장선택스위치 빔제어용 컴퓨터 생성 홀로그램)

  • Lee, Yong-Min;Han, Chang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.744-749
    • /
    • 2016
  • This paper presents the design of a computer-generated hologram for beam control of an LCOS-based wavelength selective switch, which is the core technology for next-generation ROADM. By introducing a computer-generated hologram instead of general grating patterns to control the LCOS device, we contribute to building a more efficient wavelength selective switch. With the use of phase modulation properties of LCOS devices, we designed the hologram for five-port output and a 40-channel wavelength selective switch. We applied a multi-level phase modulation technique with the Gerchberg-Saxton algorithm to produce the hologram, which is easily scalable to any different type of wavelength selective switch. With an experimental setup, we verified the usability of the hologram designed for five-port output. We also suggest a hologram design technique for beam control of a 40-channel wavelength selective switch.

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.

Control Method for the number of check-point nodes in detection scheme for selective forwarding attacks (선택적 전달 공격 탐지 기법에서의 감시 노드 수 제어기법)

  • Lee, Sang-Jin;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.387-390
    • /
    • 2009
  • Wireless Sensor Network (WSN) can easily compromised from attackers because it has the limited resource and deployed in exposed environments. When the sensitive packets are occurred such as enemy's movement or fire alarm, attackers can selectively drop them using a compromised node. It brings the isolation between the basestation and the sensor fields. To detect selective forwarding attack, Xiao, Yu and Gao proposed checkpoint-based multi-hop acknowledgement scheme (CHEMAS). The check-point nodes are used to detect the area which generating selective forwarding attacks. However, CHEMAS has static probability of selecting check-point nodes. It cannot achieve the flexibility to coordinate between the detection ability and the energy consumption. In this paper, we propose the control method for the number fo check-point nodes. Through the control method, we can achieve the flexibility which can provide the sufficient detection ability while conserving the energy consumption.

  • PDF

The effect of Lower Extremity Selective Voluntary Motor Control for joint motion during Gait in Children with Spastic Diplegia (경직성 양하지 마비아의 하지의 선택적 운동 조절 능력이 보행 시 관절 움직임에 미치는 영향)

  • Seo, Hye-Jung;Seo, Mu-Jung;Shin, Hyun-Hee;Oh, Tae-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.3
    • /
    • pp.293-302
    • /
    • 2012
  • Background & Purpose : The purpose of this study is to evaluate the impairment of SVMC(selective voluntary motor control) of the lower extremity by assessing each joints of lower limb and to analyze the motional relationship between each joints of lower limb using SCALE(Selective Control Assessment of the Lower Extremity) during the swing phase of gait cycle in children with spastic diplegia. Method : 11 children with spastic diplegia CP who could walk independently and 10 normal developing children were participated. SCALE(Selective Control Assessment of the Lower Extremity) assessments were conducted for 11 children with CP. Gait analysis were accomplished in all participants. Qualisys motion analysis was used as a statistical tool to assess the motional relationship between hip joint, knee joint and ankle joint in each limb. We used descriptive statistics, cross-tabulation, independent t-test, linear regression to analysis motional relationship between each joints of lower limb using by SPSS ver.17.0. Result : Firstly, there were significant differences in SCALE scores between the cerebal palsy group and the control group in knee joint(p<0.05), but no significant difference in hip and ankle joints during the swing phase of gait cycle. Secondly, the difference of SCALE scores showed no statistical motional difference in knee and ankle joints during the swing phase, and showed significant motional difference in hip joints during the swing phase(p<0.05). Thirdly, there was a liner relationship between the motion of hip and ankle joints during the swing phase. Conclusion : The nature of SVMC(selective voluntary motor control) in each joints of the lower limb may reflect the ability of gait, thus SCALE may be used for assessing and for treating the cerebal palsy patients who are able to walk independently. Also we knew that the impairment of SVMC(selective voluntary motor control) increases from the proximal to the distal joints.

The Effect of Vojta therapy on Gross Motor Function Measure and Selective Voluntary Motor Control in Children with Spastic diplegia (보이타 치료가 경직형 양하지 뇌성마비 아동의 대동작 운동기능 및 선택적인 수의적 운동조절에 미치는 영향)

  • Lim, Hyung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.213-221
    • /
    • 2012
  • Purpose : The purpose of this study was to investigate the effect of Vojta therapy on Gross Motor Function Measurement(GMFM) and Selective Voluntary Motor Control (SVMC) in children with Spastic diplegia. Methods : During this experiment, the subject of four children diagnosed with spastic diplegia was tested using ABA design for Single-subject Experimental Research Design. The procedure consisted of baseline, intervention and follow-up phase which was held thirty minutes each for three times a week for a total of 24 times. Gross motor function was measured using GMFM and selective voluntary motor control was measured using SCALE. Results : According to this study, the gross motor function and selective voluntary motor control of all subjects were improved from their intervention phase to their baseline phase. During the follow phase which the intervention was removed, the ability that was enhanced during the prior phases was still either maintained or only reduced slightly. Conclusion : The Vojta therapy used on children diagnosed with spastic diplegia was effective on both GMFM and SVMC. In other words, the therapy was effective on coordination. However, this study is difficult to be generalized due to the insufficient number of subject. In further studies, it will be necessary to increase the number of trials with a control group in order to generalize the effectiveness of Vojta therapy.

Protein and RNA Quality Control by Autophagy in Plant Cells

  • Yoon, Seok Ho;Chung, Taijoon
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.285-291
    • /
    • 2019
  • Eukaryotic cells use conserved quality control mechanisms to repair or degrade defective proteins, which are synthesized at a high rate during proteotoxic stress. Quality control mechanisms include molecular chaperones, the ubiquitin-proteasome system, and autophagic machinery. Recent research reveals that during autophagy, membrane-bound organelles are selectively sequestered and degraded. Selective autophagy is also critical for the clearance of excess or damaged protein complexes (e.g., proteasomes and ribosomes) and membrane-less compartments (e.g., protein aggregates and ribonucleoprotein granules). As sessile organisms, plants rely on quality control mechanisms for their adaptation to fluctuating environments. In this mini-review, we highlight recent work elucidating the roles of selective autophagy in the quality control of proteins and RNA in plant cells. Emphasis will be placed on selective degradation of membrane-less compartments and protein complexes in the cytoplasm. We also propose possible mechanisms by which defective proteins are selectively recognized by autophagic machinery.

Selective Activation for Global Ultrasonic System (전역 초음파 시스템의 선택적 활성화)

  • Kim Jin-Won;Kim Yong-Tae;Hwang Samuel B.;Yi Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.955-961
    • /
    • 2006
  • The global ultrasonic system for the self-localization of a mobile robot consists of several ultrasonic transmitters fixed at some reference positions in the global coordinates of robot environment. By activating the ultrasonic transmitters, the mobile robot is able to get the distance to the ultrasonic transmitters and compute its own position in the global coordinate. Due to the limitation on the ultrasonic signal strength and beam width as well as the environmental obstacles however, the ultrasonic signals from some generator may not be transmitted to the robot. Thus, instead of activating the all ultrasonic transmitters, it is necessary to select some ultrasonic generators to activate based on the current robot position. In this paper, we propose a selective activation algorithm for self-localization with the global ultrasonic system. The selective activation algorithm gets the meaningful ultrasonic data at every sampling instants, which results in the faster and more accurate response of the self-localization than the conventional sequential activation. Through the self-localization and path following control, we verify the effectiveness of the proposed selective activation algorithm.