• Title/Summary/Keyword: Selective adsorption

Search Result 212, Processing Time 0.025 seconds

The Influence of Carbonization Temperature and KOH Activation Ratio on the Microporosity of N-doped Activated Carbon Materials and Their Supercapacitive Behaviors

  • Son, Yeong-Rae;Heo, Young-Jung;Cho, Eun-A;Park, Soo-Jin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • A facile method for the preparation of nitrogen-doped microporous carbon via the pyrolysis of poly(vinylidene fluoride) (PVDF) using polypyrrole (PPy) as a selective nitrogen source was developed. A PVDF/PPy-800 sample (carbonized at $800^{\circ}C$) with a 1:0.5 ratio of PVDF and PPy exhibited the highest micropore volume. The activated microporous carbon materials obtained from PVDF/PPy-800 prepared at $800^{\circ}C$ with KOH possessed a large specific surface area and narrow pore-size distribution. They were characterized using $N_2$ adsorption at 77 K and argon (Ar) adsorption at 87 K, which allowed for the characterization of the narrow microporosity of the prepared materials due to the absence of interactions between Ar and the sample surface. In addition, the activated microporous carbon material with a KOH/carbon ratio of 2:1 was found to exhibit the largest specific surface area ($1296m^2g^{-1}$ in $N_2$ at 77 K) and microporosity, and a high specific capacitance ($122.8F\;g^{-1}$).

Selective Removal of Al(III) from Rare Earth Solutions Using Peas-based Activated Carbon

  • An, Fu-Qiang;Wu, Rui-Yan;Li, Min;Yuan, Zhi-Guo;Hu, Tuo-Ping;Gao, Jian-Feng
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.231-237
    • /
    • 2017
  • Efficiently removing Al(III) from rare earth is very significant because even trace amount of Al(III) can cause serious harm to the rare earth materials. In this paper, a nitrogen-containing activated carbon, AC-P700, was synthesized using peas as raw materials. The AC-P700 was characterized by surface area analyzer, FT-IR, and XPS methods. The adsorption and recognition properties of AC-P700 towards Al(III) were investigated, and the recognition mechanism was also analyzed. The BET special surface area of AC-P700 was $1277.1m^2{\cdot}g^{-1}$, and the average pore diameter was 1.90 nm. The AC-P700 possesses strong adsorption affinity and excellent recognition selectivity towards Al(III). The adsorption capacity for Al(III) could reach to $0.53mmol{\cdot}g^{-1}$, and relative selectivity coefficients relative to La(III) and Ce(III) is 9.6 and 8.7, respectively. Besides, AC-P700 possesses better regeneration ability and reusability.

Effect of Two-step Surface Modification of Activated Carbon on the Adsorption Characteristics of Metal Ions in Wastewater II. Dynamic Adsorption

  • Lee, Jae-Kwang;Park, Geun-Il;Ryu, Seung-Kon;Ki, Joon-Hyung
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • Based on the previous results of the equilibrium and batch adsorptions, the removal efficiency of the two-step surface-modified activated carbon ($2^{nd}AC$) for heavy metal ions such as Pb, Cd, and Cr in fixed column was evaluated by comparing with that of the as-received activated carbon (AC) and the first surface-modified activated carbon ($1^{st}AC$). The order of metal removal efficiency was found as $2^{nd}AC$ > $1^{st}AC$ $\gg$ AC, and the efficiency of the $2^{nd}AC$ maintained over 98% from the each metal solution. Increase of the removal efficiency by the second surface modification was contributed to maintain favorable pH condition of bulk solution during adsorption process. The removal of the heavy metals on the $2^{nd}AC$ was selective with Pb being removed in preference to Cr and Cd in multicomponent solutions and slightly influenced by phenol as the organic material.

  • PDF

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.195-204
    • /
    • 2023
  • Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

A Study on Resin Synthesis and Adsorption Characteristics for Separation and Recovery of U(VI) (우라늄(VI)의 분리회수를 위한 수지합성과 흡착특성에 관한 연구)

  • 강영식;노기환
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.31-41
    • /
    • 1999
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1, 4-di-vinylbenzene with 1%, 2%, 5% and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and had good resistance to heat at $280^{\circ}C$. The $UO_2^{2+}$ aqueous solution was not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+}$, $Cu^{2+}$ and $Ce^{3+}$ .

  • PDF

Bubble Adsorptive Separation of CuS Precipitates (CuS 침전의 기포흡착분리에 관한 연구)

  • Shin, Jeong Ho;Park, Kyung Kee;Jeong, Kap Seop;Lee, Geun Hee
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 1998
  • The characteristics of the bubble adsorptive separation of CTAB(cetyltrimethylammonium bromide) and CuS precipitates was investigated. The Langmuir adsorption equation was adequate at very low concentration of CTAB, and the adsorption heat was determined from the batch analysis considering the bulk liquid accompanied between bubbles. The adsorption mechanism was explained with the collision adsorption between bubbles and precipitate particles. The optimum concentration ratio of (CTAB) to (CuS) for adsorptive separation was 0.1 and coincided with the ratio for the coagulation of particles. The collection efficiency was depended on pH and CTAB concentration but independent of the air flow rate, and the maximum efficiency was 0.0002. The selective separation of ZnS from the mixture of Cu-Cd-Zn sulfides was obtained by the bubble adsorption with CTAB.

  • PDF

Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide

  • Lim, Yun Hui;Adelodun, Adedeji A.;Kim, Dong Woo;Jo, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.99-113
    • /
    • 2016
  • In order to improve the portability of basic absorbents monoethanolamine (MEA) and glycine (Gly), both were supported on microporous activated carbon (AC). Chemical modification by alkali-metal ion exchange (of Li, Na, K) was carried out on Gly-based absorbents. All supported absorbents were subjected to $CO_2$ absorption capacity (pure $CO_2$) and selectivity (indoor level) tests. Textural and chemical characterizations were carried out on test sorbents. All impregnation brought about significant reduction of specific surface area and microporosity of the adsorbent Depreciation in the textural properties was found to result to reduction in pure $CO_2$ sorption. Contrarily, low-level $CO_2$ removal capacity was enhanced as the absorbent dosage increases, resulting in supported 5 molar MEA in methanol solution. Adsorption capacities were improved from 0.016 and 0.8 in raw ACs to 1.065 mmol/g for MEA's. Surface chemistry via X-ray photoelectron spectroscopy (XPS) of the supported sorbents showed the presence of amine, pyrrole and quaternary-N. In reducing sequence of potency, pyridine, amine and pyrrolic-N were noticed to contribute significantly to $CO_2$ selective adsorption. Furthermore, the adsorption isotherm study confirms the presence of various SNGs heterogeneously distributed on AC. The adsorption mechanism of the present AC adsorbents favored Freundlich and Langmuir isotherm at lower and higher $CO_2$ concentrations respectively.

A Study on the Adsorption of U(VI), NiI(II), Nd(III) Metal Ions Using Synthetic Resin (합성수지를 이용한 U(VI), NiI(II), Nd(III) 금속이온들의 흡착에 관한 연구)

  • 박성규;김준태;노기환
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.77-87
    • /
    • 2000
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-l,4-divinylbenzine with 1%, 2%, 10% and 20%-crosslink and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and have good resistance to heat. The $UO_2^{2+}$ was not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was two hours and adsorptive power decreased in proportion to crosslink size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations was in the order of $UO_2^{2+}$, $Ni{2+}$ and $Nd{3+}$.

  • PDF

Investigation of Adsorption Mechanism and Selective Adsorption of Carbonyl Compounds of Mainstream Tobacco Smoke by Ion Exchangers (이온교환체에 의한 담배 주류연 중 카보닐 화합물의 선택적 흡착 특성 및 흡착 메카니즘 구명)

  • Lee John-Tae;Kim Hyo-Keun;Ji Sang-Un;Hwang Keon-Joong;Rhee Moon-Soo;Park Jin-Won
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.2 s.52
    • /
    • pp.159-167
    • /
    • 2004
  • This work has been conducted to select appropriate filter materials for removing carbonyl compounds in mainstream tobacco smoke. To investigate of the usability of this filter materials, two types of bead ion exchangers were synthesized and their adsorption characteristics for carbonyl compounds were investigated. Sulfonic acid group-containing cation exchanger and ammonium group-containing anion exchanger were synthesized by the suspension polymerization of glycidylmethacrylate(GMA) and divinylbenzene(DVB) followed by the subsequent functionalization, respectively. The removal efficiency of carbonyl compounds by these two ion exchangers increased in the presence of moisture. However, the amount of carbonyl compounds adsorbed on the anion exchanger was larger than that on the cation exchanger under two levels of water contents tested. This phenomenon seems to arise from the electron delocalization in carbonyl group of the anion exchangers. There was not any significant relationship between the amount of carbonyl compounds adsorbed on ion exchangers and the length of adsorption column. From the large ion exchange capacity and rapid ion exchange reaction rate of the anion exchanger, it is suggested that the anion exchanger may be a good filter material for removing carbonyl compounds in the mainstream tobacco smoke.

Desulfurization of Diesel by Selective Adsorption of Sulfur Compounds over Zeolite and Activated Carbon (제올라이트와 활성탄에서의 황화합물 선택 흡착에 의한 경유 탈황)

  • Park, Jung Geun;Ko, Chang Hyun;Bhandari, Vinay M.;Lee, Yongtaek;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.588-594
    • /
    • 2005
  • We have investigated Y zeolite and activated carbon for an adsorptive desulfurization of diesel. In batch experiments, cation ($Cu^{2+}$, $Ni^{2+}$) exchanged Y zeolites showed high equilibrium adsorption capacity for sulfur compounds in model diesel, which contained BT, DBT and 4,6-DMDBT of each 50 ppmw in n-octane. But the cation exchanged Y zeolites lost its capacity in commercial diesel (186 ppmw). On the other hand, activated carbon showed reasonable adsorption capacity for sulfur compounds in both model and commercial diesel. The adsorption capacity of sulfur on Ni-Y zeolite was decreased with the increase of benzene concentration in model diesel but the sorption capacity on activated carbon was insensitive to aromatic concentration. In breakthrough test, activated carbon of 1 g could treat 15 ml of commercial diesel with 186 ppmw sulfur. Toluene showed good solvent for regenerating activated carbon among several solvents.