• Title/Summary/Keyword: Selective adsorption

Search Result 212, Processing Time 0.024 seconds

Synthesis of Nanoporous Carbon as a Gas Adsorbent by Reverse Replication Process of Silica Template

  • Cho, Churl-Hee;Kim, Joon-Soo;Kim, Hong-Soo;Ahn, Young-Soo;Han, Moon-Hee;Yoo, Jong-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.519-524
    • /
    • 2003
  • Porous carbon with high surface area and pore volume was prepared by a reverse replication process and its toluene equilibrium adsorption behavior was investigated. The preparation process of the porous carbon was composed of fellowing sub-processes in series: synthesis and template preparation of silica gel, impregnation and polymerization of DVB monomer in silica template, carbonization of DVB polymer in a silica-polymer composite, and HF-assisted selective etching of silica in carbon-silica composite. The prepared porous carbon was nano porous and had ultrahigh specific surface area (2007 ㎡/g) and large pore volume (3.07 ㎤/g). The nanoporous carbon showed rapid toluene adsorption rate and good toluene adsorption capacity, compared with a commercial Y-type zeolite. In the present study, a reverse replication process to prepare nanoporous carbons will be introduced and its application potential as a gas adsorbent will be discussed.

A Study on the Synthesis of N-Acylchitosan Porous Beads and Their Metal Ion Adsorption Characteristics (N-Acylchitosan Porous Bead들의 제조 및 금속이온 흡착특성에 관한 연구)

  • Son, Suk-Il;Chang, Byung-Kwon;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.156-171
    • /
    • 1992
  • Chitin was isolated from crab shell. Chitosan, which was prepared by the deacetylation of chitin, was acylated to obtain N-acetyl(regenerated chitin), N-propionyl, N-butyryl, N-hexanoyl, N-decanoyl and N-maleated chitosans and their metal ion adsorption characteristics of N-acylchitosans were investigated. In order to enhance the adsorptivity, their porous beads were prepared and their adsorptivity with respect to the porosity and the adsorptivities for metal ions($Cu^{2+}$, $Ni^{2+}$, $CO^{2+}$, $Mn^{2+}$, $Ag^{+}$)were investigated. Their metal ion adsorptivities were remarkably imporved compared to those of chitin. As the larger acyl groups were introduced, adsorptivity increased, but that of N-decanoyl chitosan showed some decrease because of steric hindrance of the bulky N-decanoyl group. N-Maleated chitosan containing carboxyl group showed highly improved adsorptivity, and N-acylchitosans showed the good selective adsorption in the mixed metal ions($Cu^{2+}$, $Ni^{2+}$, $CO^{2+}$, $Mn^{2+}$ and $Ag^{+}$). They also showed excellent adsorption characteristics as chelating polymers.

  • PDF

$CO_2$ adsorption over zinc oxide impregnated NaZSM-5 synthesized using rice husk ash (왕겨회재를 이용하여 합성된 NaZSM-5의 zinc oxide 함침에 의한 이산화탄소 흡착)

  • Hemalatha, Pushparaj;Ganesh, Mani;Venkatachalam, Kandan;Peng, Mei-Mei;Lee, Sung-Yong;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.327-331
    • /
    • 2011
  • Zinc oxide (5, 10 and 15 wt%) impregnated NaZSM-5 zeolite synthesized using rice husk ash as silica source was tested for $CO_2$ adsorption. The materials were characterized by XRD, SEM-EDS, $CO_2$-TPD and BET techniques. The heat of the reaction (${\Delta}$Hr) derived from DSC for ZnO(10%)/NaZSM-5 was found to be 495 Btu/lb and the maximum $CO_2$ adsorption capacity of ZnO(10%)/NaZSM-5 is 140 mg/g of sorbent. Extraction of silica from the agricultural waste, rice husk and its use in the zeolite synthesis is an added advantage in this study. Hence, from the study it is concluded that zinc oxide impregnated NaZSM-5 could be treated as novel material for $CO_2$ adsorption as they were found to be regenerable, selective and recyclable.

  • PDF

Fabrication and Characterisation of a Novel Pellicular Adsorbent Customised for the Effectvie Fluidised Bed Adsorption of Protein Products

  • Sun, Yam;Pacek, Andrzej W.;Nienow, Alvin W.;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.419-425
    • /
    • 2001
  • A dense pellicular solid matrix has been fabricated by coating 4% agarose gel on to dense zironia-silica(ZS) spheres by watr-in-oil emulsification . The agarose evenly laminated the ZS bead to a depth of 30㎛, and the resultin gpellicular assembly was characterised by densities up to 2.39g/mL and a mean particle dimeter of 136 ㎛. In comparative fluidisation tests, the pellicular solid phase exhibited a two-fold greater flow velocity than commercial benchmark ad-sorbents necessary to achieve common values of bed expansion. Furthermore, the perlicular parti-cles were characterised by improved qualities of chromatographic behaviour, particularly with re-spect to a three-fold increase in the apparent effective diffusivity of lysozyme within a pellicular assembly modified with Cibacron Blue 3GA. The properties of rapid protein adsorption/desorp-tion were attributed to the physical design and pellicular deployment of the reactive surface in the solid phase. When combined with enhanced feedstock throughput, such practical advantages recommend the pellicular assembly as a base matrix for the selective recovery of protein products from complex, particulate feedstocks(whole fermentation broths, cell disruptates and biological extracts).

  • PDF

Characterization of $CO_2$ Separation in Landfill Gas by Using Adsorbent (흡착제를 이용한 매립지가스 내 $CO_2$ 분리 특성)

  • Heo, Rye-Hwa;Yoo, Young-Don;Kim, Mun-Hyun;Kim, Hyung-Taek;Choi, Ik-Hwan
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.46-51
    • /
    • 2009
  • The purpose of this study is to investigate selective adsorption of $CO_2$ from LFG (Landfill gas) by using commercialized NaX-type zeolite adsorbent under the ambient temperature and pressure. The experiment of $CO_2$ adsorption was carried out by using simulated LFG. The $CO_2$ adsorption capacity and separation efficiency of NaX-type adsorbent were investigated by analyzing gas flow rate and gas composition at inlet and outlet of the adsorption reactor. The adsorbed $CO_2$ were desorbed under decompression condition which 0.5 Torr or by air purge. Through the result to use simulated LFG, when the method of VSA was used, 73.2~75.3 mg of $CO_2$ was adsorbed per 1 g commercial adsorbent, when the method of air purge was used, 78.4~83.2 mg of $CO_2$ was adsorbed per 1 g of commercial adsorbent.

  • PDF

Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity (제올라이트: 압력순환형 흡착제로서의 특성과 CO2 흡착성능)

  • Kim, Moon-Hyeon;Cho, Il-Hum;Choi, Sang-Ok;Choo, Soo-Tae
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.943-962
    • /
    • 2014
  • Industrial gas drying, dilute gas mixtures purification, air fractionation, hydrogen production from steam reformers and petroleum refinery off-gases, etc are conducted by using adsorptive separation technology. The pressure swing adsorption (PSA) has certain advantages over the other methods, such as absorption and membrane, that are a low energy requirement and cost-effectiveness. A key component of PSA systems is adsorbents that should be highly selective to a gas being separated from its mixture streams and have isotherms suitable for the operation principle. The six standard types of isotherms have been examined in this review, and among them the best behavior in the adsorption of $CO_2$ as a function of pressure was proposed in aspects of maximizing a working capacity upon excursion between adsorption and desorption cycles. Zeolites and molecular sieves are historically typical adsorbents for such PSA applications in gas and related industries, and their physicochemical features, e.g., framework, channel structure, pore size, Si-to-Al ratio (SAR), and specific surface area, are strongly associated with the extent of $CO_2$ adsorption at given conditions and those points have been extensively described with literature data. A great body of data of $CO_2$ adsorption on the nanoporous zeolitic materials have been collected according to pressure ranges adsorbed, and these isotherms have been discussed to get an insight into a better $CO_2$ adsorbent for PSA processes.

Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater

  • Jun, Byung-Moon;Jang, Min;Park, Chang Min;Han, Jonghun;Yoon, Yeomin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1201-1207
    • /
    • 2020
  • This study explored whether MXene (Ti3C2Tx) could remove radioactive Cs+ from model nuclear wastewater. Various adsorption tests were performed and the physical aspects of the interaction were investigated. We varied the MXene dosage, Cs+ initial concentration, solution pH, solution temperature and exposure time. MXene adsorption exhibited very fast kinetics, based on the fact that equilibrium was achieved within 1 h. MXene exhibited an outstanding adsorption capacity (148 mg g-1) at adsorbent and adsorbate concentrations of 5 and 2 mg L-1, respectively, at neutral pH condition (i.e., pH 7). We explored Cs+ adsorption by MXene in the presence of four different ions (NaCl, KCl, CaCl2 and MgCl2) and three different organic acids (sodium oleate, oxalic acid, and citric acid). The Cs+ removal rate changed in the presence of these components; adsorption of Cs+ by MXene thus involved ion exchange, supported by both Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. We confirmed that MXene was re-usable for at least four cycles. MXene is cost-effective and practical when used to adsorb radionuclides (e.g., Cs+) in nuclear wastewater.

Adsorption Mechanism of Solid Acid in Nonaqueous Solution (固體酸의 非水溶液에서의 吸着메카니즘에 관한 硏究)

  • Kwun, Oh-Cheun
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.185-189
    • /
    • 1965
  • Korean acid clays and silica gel were put into action on benzene solution of dye, such as aniline yellow, o-nitro aniline and oil orange, and then the adsorptivity of dye in nonaqueous solution was measured, with the result that adsorptivity was greater with silica than acid clays and it had no relation to acidity. And when chemical compounds, such as amine, alcohol, halogen derivative, were added to each dye solution by 10%(in volume), the change of the adsorptivity of dye by solid acid(that is, the interfered adsorption rate) decreased in order of amine > alcohol > halogen derivative, and in homologue the smaller the molecular weight, the larger was the effect. So adsorption in nonaqueous solution was a selective adsorption of chemical compounds which contained negative groups such as amine and hydroxyl radicals, and it had no relation to surface tension and showed inverted phenomenon of Traube series. It is guessed that the inverted phenomenon (the interfered adsorption phenomenon) was due to the polar chemical adsorption between active $SiO_2$ which was an origin of solid acid and the adsorbed substances, considering that the order of inversion was nearly in accord with dipole moment of added solvents. The results of this study led to find adsorption mechanism and inverted phenomenon of Traube series in nonaqueous solution.

  • PDF

Preparation of Hydrazine Impregnated Adsorbents and Selective Adsorption Properties for Carbonyl Compounds in Cigarette Mainstream Smoke (Hydrazine 첨착 흡착제의 제조 및 담배 주류연 중 카보닐 화합물의 선택 흡착 특성)

  • Lee, John-Tae;Park, Jin-Won;Lee, Jeong-Min;Rhee, Moon-Soo;Hwang, Keon-Joong;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.210-216
    • /
    • 2006
  • To use the filter materials for selective removal of carbonyl compounds in cigarette mainstream smoke, hydrazine such as 2,4-dinitrophenylhydrazine (2,4-DNPH) and dansylhydrazine (DAH) impregnated adsorbents were prepared with perchloric acid or phosphoric acid as an accelerator in hydrazone formation reaction. Changes of molecular structure and morphology of adsorbents in various of impregnator were investigated by FTIR/ATR and SEM. Impregnation amount caused by reaction time, acid type and impregnation reagent, and the adsorption properties of carbonyl compounds in cigarette mainstream smoke were studied. Amounts of impregnation increased with increasing reaction time. The removal amount for vapor phase carbonyl compounds by 2,4-DNPH impregnated adsorbent was higher than that of dansylhydrazine impregnated adsorbent. The selectivity of 2,4-DNPH impregnated polyacrylic type adsorbent was superior to those of other adsorbents. This result indicates that the 2,4-DNPH impregnated polyacrylic adsorbent is applicable to cigarette filter material because of its fast reactivity and porosity.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite (제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.