• Title/Summary/Keyword: Selective Mechanism

Search Result 441, Processing Time 0.026 seconds

Cu2+ and Hg2+Selective Chemosensing by Dioxocyclams Having Two Appended Pyrenylacetamides

  • Jeon, Hye-Lim;Choi, Myung-Gil;Choe, Jong-In;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1093-1096
    • /
    • 2009
  • Two new chemosensors 1 and 2 derived from 5,12- and 5,7-dioxocyclams were prepared and their signaling behaviors toward transition metal ions were investigated. Chemosensors 1 and 2 showed very efficient responses toward $Cu_{2+}$ and $Hg_{2+}$ ions. Ratiometric analysis of the fluorescence changes in pyrene monomer and excimer emissions clearly demonstrated the $Cu_{2+}$- and $Hg_{2+}$-selective signaling behavior. The signaling mechanism of the chemosensors is due to conformation changes upon complexation with metal ions and the inherent quenching nature of the complexed $Cu_{2+}$ and $Hg_{2+}$ ions themselves.

Metabolism-based Anticancer Drug Design

  • Kwon, Chul-Hoon
    • Archives of Pharmacal Research
    • /
    • v.22 no.6
    • /
    • pp.533-541
    • /
    • 1999
  • Many conventional anticancer drugs display relatively poor selectivity for neoplastic cells, in particular for solid tumors. Furthermore, expression or development of drug resistance, increased glutathione transferases as well as enhanced DNA repair decrease the efficacy of these drugs. Research efforts continue to overcome these problems by understanding these mechanisms and by developing more effective anticancer drugs. Cyclophosphamide is one of the most widely used alkylating anticancer agents. Because of its unique activation mechanism, numerous bioreversible prodrugs of phosphramide mustard, the active species of cyclophosphamide, have been investigated in an attempt to improve the therapeutic index. Solid tumors are particularly resistant to radiation and chemotherapy. There has been considerable interest in designing drugs selective for hypoxic environments prevalent in solid tumors. Much of the work had been centered on nitroheterocyclics that utilize nitroreductase enzyme systems for their activation. In this article, recent developments of anticancer prodrug design are described with a particular emphasis on exploitation of selective metabolic processes for their activation.

  • PDF

PARTIAL OXIDATION OF PROPANE ON NAFION SUPPORTED CATALYTIC MEMBRANE

  • F. Frusteri;C. Espro;F. Arena;F. Arena;E. Passalacqua;A.Patti;A. Parmaliana
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.55-58
    • /
    • 1999
  • Nafion supported catalytic membranes were found to be active, stable and selective in th partial oxidation of propane to oxygenates with H2O2 under mild condition. Addition of Fe2+ in liquid phase enhances the reaction rate. Reaction proceeds according to a radical mechanism based on th electrophilic activation of propane on superacid sites and subsequent reaction of the activated paraffin with OH radicals. The use of a catalytic membrane, which allow separation of the intermediate products from the liquid phase containing the oxidant, was found to be effective to perform selective partial oxidation of propane with high yields to oxygenated products.

A Selective Control Mechanism for Fairness of DQDB in Client-Server Traffic (클라이언트-서버 트래픽에서 DQDB 공정성을 위한 선택제어 방식)

  • 김정홍;황하응
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2003
  • A fairness control method for Distributed-Queue Dual-Bus(DQDB) has been studied under specific traffic types such as equal probability traffic, symmetric traffic and asymmetric traffic. To distribute DQDB network bandwidth fairly to all stations under general traffic such as a client-server traffic that differs from specific traffic types, we propose an effective fairness control method. Based on an access limit, the proposed mechanism applies two bandwidth control mechanisms to DQDB networks. One is the mechanism that is called APS(Access Protection Scheme) for servers. And another is the mechanism that controls the allocation of bandwidth only using an access limit lot clients. Simulation results show that it outperforms other mechanisms.

  • PDF

Performance Analysis of an ATM MUX with a New Space Priority Mechanism under ON-OFF Arrival Processes

  • Bang, Jongho;Ansari, Nirwan;Tekinay, Sirin
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.128-135
    • /
    • 2002
  • We propose a new space priority mechanism, and analyze its performance in a single Constant Bit Rate (CBR) server. The arrival process is derived from the superposition of two types of traffics, each in turn results from the superposition of homogeneous ON-OFF sources that can be approximated by means of a two-state Markov Modulated Poisson Process (MMPP). The buffer mechanism enables the Asynchronous Transfer Mode (ATM) layer to adapt the quality of the cell transfer to the Quality of Service (QoS) requirements and to improve the utilization of network resources. This is achieved by "Selective-Delaying and Pushing-ln"(SDPI) cells according to the class they belong to. The scheme is applicable to schedule delay-tolerant non-real time traffic and delay-sensitive real time traffic. Analytical expressions for various performance parameters and numerical results are obtained. Simulation results in term of cell loss probability conform with our numerical analysis.

Selective Mechanism of Cyhalofop-butyl ester between Rice(Oryzae sativa L.) and Echinochloa crus-galli - III. Uptake, Translocation, and Metabolism, of 14C-cyhalofop-butyl ester (제초제(除草劑) Cyhalofop-butyl ester의 벼와 피간(間)의 선택성기작(選擇性機作) - III. 흡수(吸收), 전이(轉移) 및 대사(代謝))

  • Kim, K.U.;Park, J.E.
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.185-191
    • /
    • 1997
  • This experiment was conducted to determine the selective mechanism of cyhalofop-butyl ester on uptake, traslocation, and metabolism of the herbicide in both rice and Echinochloa crus-galli. Uptake and translocation of $^{14}C$-cyhalofop-butyl ester was higher in E. crus-galli than rice when treated to shoot. $^{14}C$-uptake by root of E. crus-galli increased rapidly at 30 minute after treatment and reached the maximum at 12 hoots after treatment. After that, uptake was leveled off. Uptake pattern in rice root was not significantly affected by the duration of herbicide treatment. In E. crus-galli, the absorbed $^{14}C$-cyhalofop-butyl ester seemed to be rapidly metabolized into free acid and the content of changed free acid was higher than rice.

  • PDF

Kinetics and Mechanism of the Selective Oxidation of Ethylene for Ethylene Oxide over Monolithic Silver Catalyst (모놀리스형 은촉매상에서 에틸렌선택산화반응의 속도론적 고찰)

  • Park, Rho-Bum;Kim, Sang-Chai;Sunwoo, Chang-Sin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.165-174
    • /
    • 1991
  • The kinetics and the mechanism for the selective oxidation of ethylene on the supported monolithic silver catalyst were experimentally investigated in a fixed bed tubular reactor. The formation rates of ethylene oxide and carbon dioxide were measured at the atmospheric pressure with various combinations of partial pressures of ethylene and oxygen at temperature range of $225-300^{\circ}C$, conversion with 1.2-7.5 %, and then the mechanism of the selective oxidation of ethylene was verified. Their formation rates fitted with the Langmuir-Hinshelwood mechnism. The ethylene oxide and carbon dioxide are produced by reation of adsorbed ethylene with monoatomic oxygen adsorbed on the active sites of Ag-surface, and their formation rate equation are expressed as : $R_{EO}={\frac{k_1K_0{^{1/2}}K_EK_SP_{02}{^{3/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^2(1+{\sqrt{K_SP_{02}})^2}}$ $R_C={\frac{k_2K_0{^3}K_EK_S{^{7/2}}P_{02}{^{13/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^7(1+{\sqrt{K_SP_{02}})^7}}$ The activation energies of ethylene oxide and dioxide and carbon dioxide formations can be estimated to be 12.25 and 17.85 Kcal/mol, respectively.

  • PDF

PHOTOCATALYTIC SYNTHESIS OF L-PIPECOLINIC ACID FROM $N_{varepsilon}$-CARBAMYL-L-LYSINE BY AQUEOUS SUSPENSION OF PLATINIZED TITANIUM(IV) OXIDE

  • Ohtani, Bunsho;Aoki, Eishiro;Iwai, Kunihiro;Nishimoto, Sei-Ichi
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • Photoirradiation at > 300 nm onto a suspension of platinized TiO$_2$ (TiO$_2$-Pt) particles in an aqueous solution. of N$_{\varepsilon}$-carbamyI-L-lysine (Lys(CONH)$_2$) induced the selective N-cyclization of Lys(CONH$_2$) into almost optically pure L-pipecolinic acid (PCA) under argon atmosphere at ambient temperature. Among various TiO$_2$-Pt catalysts, a P-25 (Degussa) powder platinized via impregnation from chloroplatinic acid followed by hydrogen reduction at 753 K exhibited the highest photocatalytic activity for Lys(CONH$_2$) consumption and L-PCA production. GC-MS analyses of L-PCA obtained photocatalytically from $^{15}$N$\alpha$-Lys(CONH$_2$) revealed the selective formation $^{15}$N-substituted L-PCA. This implies that the mechanism for L-PCA production contains selective cleavage of C$_{\varepsilon}$-N bond and intramolecular alkylation at $\alpha$-amino group. Effect of pH on the rate of this photocatalytic reaction was investigated in detail and compared with the pH-dependent charge distribution in Lys(CONH$_2$) molecule. It is clarified that protonation-deprotonation of $\alpha$-amino group gives marked influence on the rate and selectivity of the photocatalytic reaction. On the basis of these results, it is concluded that the selective production of optically pure L-PCA, especially in an acidic suspension of TiO$_2$-Pt, was attributed to the enhanced protonation of $\alpha$-amino group to prevent undesirable oxidation by photogenerated positive holes and blocking of $\varepsilon$-amino group to yield racemic Schiff base intermediate.

  • PDF

Selective Epitaxy Growth of Multiple-Stacked InP/InGaAs on the Planar Type by Chemical Beam Epitaxy (화학적 빔 에피탁시에 의한 평면구조에서의 InP/InGaAs 다층구조의 선택적 영역 에피 성장)

  • Han, Il-Ki;Lee, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.468-473
    • /
    • 2009
  • Selective area epitaxy of multiple-stacked InP/InGaAs structures were grown by chemical beam epitaxy. The width of top of the multiple-stacked InP/InGaAs layer which were selectively grown on the stripe lines parallel to the <011> direction was narrowed, while the width of top of the multiple-stacked InP/InGaAs layer on the stripe lines parallel to the <01-1> was widen. This difference according to the <011> and <01-1> direction was explained by the growth of InGaAs <311>A and B faces on the (100) InP surface on the stripe lines parallel to the <01-1> direction. Under growth rate of $1\;{\mu}m/h$, top of the multiple-stacked InP/InGaAs was flattened as the pressure of group V gas was decreased. This phenomenon was understood by the saturation of group V element on the surface.

Framework-assisted Selective Page Protection for Improving Interactivity of Linux Based Mobile Devices (리눅스 기반 모바일 기기에서 사용자 응답성 향상을 위한 프레임워크 지원 선별적 페이지 보호 기법)

  • Kim, Seungjune;Kim, Jungho;Hong, Seongsoo
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1486-1494
    • /
    • 2015
  • While Linux-based mobile devices such as smartphones are increasingly used, they often exhibit poor response time. One of the factors that influence the user-perceived interactivity is the high page fault rate of interactive tasks. Pages owned by interactive tasks can be removed from the main memory due to the memory contention between interactive and background tasks. Since this increases the page fault rate of the interactive tasks, their executions tend to suffer from increased delays. This paper proposes a framework-assisted selective page protection mechanism for improving interactivity of Linux-based mobile devices. The framework-assisted selective page protection enables the run-time system to identify interactive tasks at the framework level and to deliver their IDs to the kernel. As a result, the kernel can maintain the pages owned by the identified interactive tasks and avoid the occurrences of page faults. The experimental results demonstrate the selective page protection technique reduces response time up to 11% by reducing the page fault rate by 37%.