• Title/Summary/Keyword: Selective Mechanism

Search Result 441, Processing Time 0.031 seconds

The Effect of Lidocaine.HCl on the Fluidity of Native and Model Membrane Lipid Bilayers

  • Park, Jun-Seop;Jung, Tae-Sang;Noh, Yang-Ho;Kim, Woo-Sung;Park, Won-Ick;Kim, Young-Soo;Chung, In-Kyo;Sohn, Uy Dong;Bae, Soo-Kyung;Bae, Moon-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.413-422
    • /
    • 2012
  • The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine HCl. Lidocaine HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.

Reduction of Food Intake by Fenofibrate is Associated with Cholecystokinin Release in Long-Evans Tokushima Rats

  • Park, Mi-Kyoung;Han, Ying;Kim, Mi-Sun;Seo, Eun-Hui;Kang, Soo-Jeong;Park, So-Young;Koh, Hyeong-Jong;Kim, Duk-Kyu;Lee, Hye-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.181-186
    • /
    • 2012
  • Fenofibrate is a selective peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) activator and is prescribed to treat hyperlipidemia. The mechanism through which $PPAR{\alpha}$ agonists reduce food intake, body weight, and adiposity remains unclear. One explanation for the reduction of food intake is that fenofibrate promotes fatty acid oxidation and increases the production of ketone bodies upon a standard experimental dose of the drug (100~300 mg/kg/day). We observed that low-dose treatment of fenofibrate (30 mg/kg/day), which does not cause significant changes in ketone body synthesis, reduced food intake in Long-Evans Tokushima (LETO) rats. LETO rats are the physiologically normal controls for Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are obese and cholecystokinin (CCK)-A receptor deficient. We hypothesized that the reduced food intake by fenofibrate-treated LETO rats may be associated with CCK production. To investigate the anorexic effects of fenofibrate in vivo and to determine whether CCK production may be involved, we examined the amount of food intake and CCK production. Fenofibrate-treated OLETF rats did not significantly change their food intake while LETO rats decreased their food intake. Treatment of fenofibrate increased CCK synthesis in the duodenal epithelial cells of both LETO and OLETF rats. The absence of a change in the food intake of OLETF rats, despite the increase in CCK production, may be explained by the absence of CCK-A receptors. Contrary to the OLETF rats, LETO rats, which have normal CCK receptors, presented a decrease in food intake and an increase in CCK production. These results suggest that reduced food intake by fenofibrate treatment may be associated with CCK production.

Data Cache System based on the Selective Bank Algorithm for Embedded System (내장형 시스템을 위한 선택적 뱅크 알고리즘을 이용한 데이터 캐쉬 시스템)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.69-78
    • /
    • 2009
  • One of the most effective way to improve cache performance is to exploit both temporal and spatial locality given by any program executive characteristics. In this paper we present a high performance and low power cache structure with a bank selection mechanism that enhances exploitation of spatial and temporal locality. The proposed cache system consists of two parts, i.e., a main direct-mapped cache with a small block size and a fully associative buffer with a large block size as a multiple of the small block size. Especially, the main direct-mapped cache is constructed as two banks for low power consumption and stores a small block which is selected from fully associative buffer by the proposed bank selection algorithm. By using the bank selection algorithm and three state bits, We selectively extend the lifetime of those small blocks with high temporal locality by storing them in the main direct-mapped caches. This approach effectively reduces conflict misses and cache pollution at the same time. According to the simulation results, the average miss ratio, compared with the Victim and STAS caches with the same size, is improved by about 23% and 32% for Mibench applications respectively. The average memory access time is reduced by about 14% and 18% compared with the he victim and STAS caches respectively. It is also shown that energy consumption of the proposed cache is around 10% lower than other cache systems that we examine.

Herbicidal Activity of Essential Oil from Amyris (Amyris balsamifera) (아미리스 정유의 제초활성)

  • Yun, Mi Sun;Yeon, Bo-Ram;Cho, Hae Me;Choi, Jung Sup;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.44-49
    • /
    • 2012
  • The objective of this study was to know the herbicidal activity of the essential oil from amyris (Amyris balsamifera). In a seed bioassay experiment, the amyris essential oil inhibited the growth of rapeseed (Brassica napus) by fifty percent at 8.8 ${\mu}g\;g^{-1}$. And in a greenhouse experiment, sorghum, barnyard grass and Indian jointvetch, which was applied in above-ground parts, with the amyris essential oil at 4,000 ${\mu}g\;ml^{-1}$ showed visual injuries of 90, 70, and 70, respectively (0, no damage; 100, total damage). However, soil application of the essential oil did not show such herbicidal injuries. In a field experiment, foliar application of the amyris essential oil at 5% controlled effectively weeds such as barnyardgrass, shepherd's purse, and clover in 24 hours. Our results indicated that the amyris essential oil had herbicidal activity. To understand the composition of the amyris essential oil, the oil was analyzed by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus. There were 15 organic chemicals in the oil and the major constituents were calarene, elemol, ${\gamma}$-eudesmol, curcumene, ${\beta}$-sesquiphellandrene, zingiberene, selina-3,7(11)-diene, 1,3-diisopropenyl-6-methyl-cyclohexene, ${\beta}$-bisabolene, and ${\beta}$-maaliene. Overall results suggest that the amyris essential oil had a herbicidal activity with fast, contact, and non-selective mechanism.

Effects of 4 Weeks Endurance Exercise on Expression of Extracellular Signal-Regulated Kinases and c-Jun N-terminal Kinase in Rat Back Skin Hair Follicle (4주간 지구성 운동이 흰쥐의 Back Skin Hair Follicle에서 ERK 및 JNK의 활성화에 미치는 영향)

  • Kim, Mo-Kyung;Park, Han-Su;Jo, Sung-Cho;Chae, Jeong-Ryong;Kim, Mo-Young;Shin, Byung-Cheul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1211-1216
    • /
    • 2006
  • The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the Extracellular-signal regulated protein kinase (ERK1/2), Phosphorylated ERK 1/2(pERK1/2) and the Phosphorylated c-Jun N-terminal kinase(pJNK) pathways was determined in rat Back skin Hair follicle. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary group(NE; n=10); (ii) low-intensity exercise group (Bm/min; LIE; n=10); and (iii) moderate-high-intensity exercise group(28m1min; HIE; n=10). The training regimens were planned so that animals covered the same distance and had similar utilization for both LIE and HIE exercise sessions. The report runs as follows; A single bout of LIE or HIE following 4 weeks of exercise led to a twofold increase in the phosphorylation of ERK2, pERK2 and a threefold increase in pJNKl, pERKl. ERKI phosphorylation in LIE Back skin sampled and pJNK2 in HIE Back skin sampled 48h after the last exercise bout was similar to sedentary values, while pJNK2 phosphorylation in LIE Back skin sampled was 70-80% lower than sedentary. 48h after the last exercise bout of LIE or HIE increased ERK2, pERKl and pJNKl expression, with the magnitude of this increase being independent of prior exercise intensity or duration. PERK1/2, pJNKl expression was increased Three- to fourfold in Back skin Hair follicle sampled 48h after the last exercise bout irrespective of the prior exercise programme, but ERKI expression in HIE Back skin sampled was approximately 90% lower than sedentary values. In conclusion, exercise-training of different jntensities/durations results in selective postexercise activation of intracellular signal pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.

Alleviation Technology of Cold Stress of Maize(Zea mays L.) by Low Temperatures Damage

  • Youngchul Yoo;Mi-jin Chae;Jeong Ju Kim;Seuk Ki Lee;AReum Han;Won Tae Jeon;Dae-Woo Lee;Beom-Young Son
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.95-95
    • /
    • 2022
  • Maize is one of the world's three largest crops and has a long cultivation history, and is an important crop used for various purposes such as food, feed, and industrial raw materials. Recently, the agricultural environment is changing, in which the limit of cultivation of crops is shifted to the north due to the rise in temperature due to climate change. This study was conducted in experimental field of Suwon in 2022 by setting a seeding period earlier than the sowing time to establish the North Korean agricultural climatic zone and meteorological conditions. The test cultivars were silage cultivars, Kwangpyeongok and Dacheongok. As a priming test method, it was used to directly plant seeds in the field through immersion using 4mM zinc (Zn) and 2.5mM manganese (Mn), which are trace elements for seeds. The planting season was early on March 15th, April 1st, and April 15th. The number of days from sowing to silk stage of the two cultivars sown on March 15, April 1, and April 15 was 107, 93, and 85 days for Kwangpyeongok and 109, 95, and 87 days for Dacheongok, respectively. The seed priming test did not show any difference from the control group in the growth survey up to the middle stage of growth. In another test, low-temperature recovery was confirmed through nitrogen (2-5%) foliar fertilization after 3 days, 5 days, and 7 days in refrigeration (0 degrees), a selective low temperature treatment for com in the third leaf stage. As a result of this study, it was confirmed that the low-temperature damaged com treated at 0℃ showed the same growth as that of the untreated com through nitrogen foliar fertilization. These results suggest that urea foliar fertilization for low-temperature damage reduction of corn for silage in high-latitude climates will be helpful. In addition, through the results of the study, additional studies are needed on the recovery mechanism and field application through urea foliar fertilization.

  • PDF

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.

The Effects of $\alpha$ -Adrenergic Drugs on the Myocardial Preconditioning in Rats. (교감신경계 약물의 허혈-재관류 후 심기능 회복에 미치는 영향)

  • 장원채;송상윤;오상기;안병희;김상형
    • Journal of Chest Surgery
    • /
    • v.34 no.11
    • /
    • pp.809-822
    • /
    • 2001
  • Background: Ischemic preconditioning(IP) is known to be effective in the protection of myocardial necrosis, arrhythmia, and the restoration of the myocardial function in the ischemia-reperfusion state of the heart. However the exact mechanism is not clearly understood. The purpose of this study was to elucidate the trigger mechanism 7f IP on the restoration of the myocardial function after ischemia-reperfusion. Material and Method: By connecting a Langendorff perfusion apparatus with an isolated heart of a rat, the normal temperature of the heart was maintained. The experiment was conducted in seven groups, which were divided according to the preconditioning stimuli and blockage methods Group I(n=10) was a group without IP, Group II(n=10) a group of three-minute IP, Group III(n=10) a group of PEIP, Group IV(n=10) a group of clonidine IP, Group V(n=10) a group of If after reserpine, Group Vl(n=10) a group of PE & prazosin IP, and Group Vll(n=10) a group of clonidine & yohimbine IP. Hemodynamic parameters of DP, LVEDP, $\pm$dP/dT and the changes of perfusion in the coronary artery were evaluated. Result: Developed pressure and +dP/dT changed per unit time. After 20 minutes of reperfusion, those of Group II and III were 63.1$\pm$3.7%, 64.8$\pm$4.6% and 64.5$\pm$4.6%, 63.8$\pm$4.4%, which improved more significantly than those of Group I(P<0.05), However, there were no significant differences between the Groups V and Vl, and Group I. Conclusion: The Brief ischemic preconditioning and pharmacological preconditioning using $\alpha$-receptor sympatho-mimetics have protecting effects on the restoration of myocardial function after reperfusion. And the protecting effect of preconditioning seems to be related to sympathetic neurotransmitters and to the selective action of the $\alpha$$_1$-adrenergic receptor.

  • PDF

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

H. pylori Infection and Gastric Carcinogenesis (H. pylori Infection 감염과 위암 발생)

  • Han Sang-Uk;Cho Yong-Kwan;Chung Jae-Yun;Park Hyun-Jin;Kim Young-Bae;Nam Ki-Taek;Kim Dae-Yong;Joo Hee-Jae;Choi Jun-Hyuk;Kim Jin-Hong;Lee Ki-Myung;Kim Myung-Wook;Hahm Ki-Baik
    • Journal of Gastric Cancer
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2002
  • In spite the fact that H. pylori infection might be the causative organisms of acute and chronic gastritis, peptic ulcer diseases and the definition as the class I carcinogen by WHO IARC, still debates exist about the relationship between H. pylori and gastric carcinogenesis. Epidemiological and animal studies demonstrated a link between gastric cancer and chronic infection with H, pylori, but the exact mechanism responsible for the development of gastric cancer in H. pylori-infected patients still remain obscure. In order to declare the clear association, definate evidences like that decrement in the incidence of gastric cancer after the eradication of H. pylori in designated area compared to noneradicated region or the blockade of specific mechanism acting on the carcinogenesis by H. pylori infection. The other way is to identify the upregulating oncogenes or downregulating tumor suppressor genes specifically invovled in H. pylori-associated carcinogenesis. For that, we established the animal models using C57BL/6 mice strain. Already gastric carcinogenesis was developed in Mongolian gerbils infected with H. pylori, but there has been no development of gastric cancer in mice model infected with H. pylori after long-term evaluation. Significant changes such as atrophic gastritis were observed in mice model. However, we could observe the development of mucosal carcinoma in the stomach of transgenic mice featuring the loss of TGF-beta sig naling by the expressions of dominant negative forms of type II receptor specifically in the stomach. Moreover, the incidence of gastric adenocarcinoma was significantly increased in group administered with both MNU and H. pylori infection than MNU alone, signifying that H. pylori promoted the gastric carcinogenesis and there might be host susceptibility genes in H. pylori-associated gastric carcinogenesis. Based on the assumption that chronic, uncontrolled inflammation might predispose to carcinogenesis, there have been several evidences showing chronic atrophic gastritis predisposed to gastric carcinogenesis in H. pylori infection. Although definite outcome of chemoprevention was not drawn after the longterm administration of anti-inflammatory drug in H. pylori infection, the actual incidence of atrophic gastritis and molecular evidence of chemoprevention could be obtained. Selective COX-2 inhibitor was effective in decreasing the development of gastric carcinogenesis provoked by H. pylori infection and carcinogen like in chemoprevention of colon carcinogenesis.

  • PDF