• Title/Summary/Keyword: Selective Laser Melting

Search Result 69, Processing Time 0.027 seconds

Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency (태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구)

  • Lee, Chang-Joon;Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1135-1140
    • /
    • 2012
  • Two-step metallization processes have been proposed to achieve high-efficiency silicon solar cells, where the front-side grids are formed by silver plating after the formation of a nickel seed layer with a mask. Because the conventional mask patterning process is performed by an expensive selective printing method using either UV resist or phase change ink, however, the combination of a simple coating and laser-selective ablation processes is proposed in this study as an alternative means. As a masking material, the solar cell wafer was coated with either inexpensive wax having a low melting temperature or a fluorocarbon solution, and then, an electrode image was patterned by selectively removing the masking material using the laser. It was found that the fluorocarbon coating was not only superior to the wax coating in terms of pattern uniformity but it also increased the efficiency of the solar cell by 0.16%, as confirmed by statistical f and t tests.

Design and Analysis of Aluminum Melting Machine in Fused Deposition Modeling Method (압출 적층 방식의 알루미늄 용융기의 설계 및 해석)

  • Lee, Hyun-Seok;Na, Yeong-Min;Kang, Tae-Hun;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.62-72
    • /
    • 2015
  • Interest in three-dimensional (3D) printing processes has grown significantly, and several types have been developed. These 3D printing processes are classified as Selective Laser Sintering (SLS), Stereo-Lithography Apparatus (SLA), and Fused Deposition Modeling (FDM). SLS can be applied to many materials, but because it uses a laser-based material removal process, it is expensive. SLA enables fast and precise manufacturing, but available materials are limited. FDM printing's benefits are its reasonable price and easy accessibility. However, metal printing using FDM can involve technical problems, such as suitable component supply or the thermal expansion of the heating part. Thus, FDM printing primarily uses materials with low melting points, such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) resin. In this study, an FDM process for enabling metal printing is suggested. Particularly, the nozzle and heatsink for this process are focused for stable printing. To design the nozzle and heatsink, multi-physical phenomena, including thermal expansion and heat transfer, had to be considered. Therefore, COMSOL Multiphysics, an FEM analysis program, was used to analyze the maximum temperature, thermal expansion, and principal stress. Finally, its performance was confirmed through an experiment.

The removable prosthetic restorations utilizing CAD/CAM system (임상가를 위한 특집 4 - CAD/CAM 시스템을 이용한 가철성 보철 수복)

  • Park, Ji-Man;Park, Eun-Jin;Kim, Seong-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.140-147
    • /
    • 2012
  • Recently, the digital solution of fabricating removable prosthesis by applying haptic input device, electronic surveying, and rapid prototyping was introduced. This review article covers the concept of electronic surveying, computer-aided denture framework designing procedure, discussions after several digital denture cases, directions of future development, such as digital tooth arrangement and RP flasking.

A Comparative Analysis of the Classification System for Three-Dimensional Concrete Printers (3D 콘크리트 프린터 분류체계 비교연구)

  • Chung, Jihoon;Lee, Ghang;Kim, Jung-Hoon;Choi, Jaejin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.3-14
    • /
    • 2020
  • This study reviews and comparatively analyzes existing classification systems for 3D concrete printers to propose a classification system for 3D concrete printers. Several classifications for existing 3D printers have been proposed and used in the market. Nevertheless, quite a few of the printer types such as fused deposition modeling (FDM) and selective laser melting (SLM) are not suitable for characterizing 3D concrete printers. To derive the properties that distinguish one 3D concrete printer type from the others, this study reviews existing 3D concrete printers and comparatively analyzes the properties of 3D concrete printers identified in previous studies. The results show that existing classifications do not reflect the states-of-the-art of 3D concrete printers, the classification terms are ambiguous, and the entire printing processes are not considered. A new classification system was proposed based on the essential properties of the 3D concrete printers identified through the analysis of related work. The result of this study can be used as a basis for classifying commercial 3D concrete printers as well as studies related to 3D concrete printers.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes (금속 나노입자 프린팅 공정을 이용한 유연전기소자 연구 현황)

  • Ko, Seung Hwan
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Flexible electronics are the electronics on flexible substrates such as a plastic, fabric or paper, so that they can be folded or attached on any curved surfaces. They are currently recognized as one of the most innovating future technologies especially in the area of portable electronics. The conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics. However, flexible polymer substrates are generally chemically incompatible with resists, etchants and developers and high temperature processes used in conventional integrated circuit processing. Additionally, conventional processes are time consuming, very expensive and not environmentally friendly. Therefore, there are strong needs for new materials and a novel processing scheme to realize flexible electronics. This paper introduces current research trends for flexible electronics based on (a) nanoparticles, and (b) novel processing schemes: nanomaterial based direct patterning methods to remove any conventional vacuum deposition and photolithography processes. Among the several unique nanomaterial characteristics, dramatic melting temperature depression (Tm, 3nm particle~$150^{\circ}C$) and strong light absorption can be exploited to reduce the processing temperature and to enhance the resolution. This opens a possibility of developing a cost effective, low temperature, high resolution and environmentally friendly approach in the high performance flexible electronics fabrication area.

Technology Trend of Additive Manufacturing for Fabrication of Liquid Rocket Engines (액체로켓엔진 제작을 위한 적층제조 기술 동향)

  • Yoo, Jaehan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.73-82
    • /
    • 2020
  • Recently, there has been an increase in additive manufacturing for the fabrication of liquid rocket engines. This technology can innovate conventional fabrication methods to reduce the lead time and manufacturing cost and can enhance the performances such as weight reduction. In this study, a literature survey is presented that includes types, advantages, disadvantages, and foreign government-based projects of the technology related to liquid rocket engine manufacturing. The present survey focuses on the technology that has been applied to various components such as turbopumps and valves while much larger efforts are made for combustion chambers with regenerative cooling channels and diverging nozzles, as the advantages of the technology are maximized for the applications.

Mechanical Analysis of Macro-Hexagon Porous Dental Implant Using Selective Laser Melting Technique (SLM법으로 매크로 육각다공질 구조를 부여한 치과 임플란트의 역학 분석)

  • Kim, Bu-Sob;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Purpose: In this study, FEM(Finite Element Method) and bending strength test was conducted using normal implant and porous implant for the mechanical estimation of porous dental implant made by SLM method. Methods: Mechanical characteristics of PI(porous implant) and NI(normal implant) applied distributed loads(200N, 500N) were observed through FEM analysis. And each bending strength was gotten through bending test using MTS(Mechanical Test System, Instron 8871). Results: The result of FEM analysis was observed that stress difference between upper and surface of PI was 12 times, while NI was 2 times. The result of bending test was observed that bending strength of PI was lower than NI. we made a decision about this result that cross-sectional area of NI was larger than the PI. Conclusion: The stress shielding ability of porous implant was better than normal implant through result of FEM analysis. And bending strength of porous implant was lower than NI. We think that cause of this result was difference of cross-sectional area.

3D-printed titanium implant with pre-mounted dental implants for mandible reconstruction: a case report

  • Park, Jung-Hyun;Odkhuu, Michidgerel;Cho, Sura;Li, Jingwen;Park, Bo-Young;Kim, Jin-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.28.1-28.4
    • /
    • 2020
  • Background: This clinical case presented a novel method of segmental mandible reconstruction using 3D-printed titanium implant with pre-mounted dental implants that was planned to rehabilitate occlusion. Case presentation: A 53-year-old male who suffered osteoradionecrosis due to the radiation after squamous cell carcinoma resection. The 3D-printed titanium implant with pre-mounted dental implant fixtures was simulated and fabricated with selective laser melting method. The implant was successfully inserted, and the discontinuous mandible defect was rehabilitated without postoperative infection or foreign body reaction during follow-ups, until a year. Conclusions: The 3D-printed titanium implant would be the one of the suitable treatment modalities for mandible reconstruction considering all the aspect of mandibular functions.

3D printed surveyed restoration and metal framework in removable dentures: A case report (3D 프린팅 된 서베이드 금관과 금속 프레임워크를 이용한 양악 가철성 의치 수복 증례)

  • Song Yi Park;Sang-Won Park;Chan Park;Woohyung Jang;Kwi-Dug Yun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.153-159
    • /
    • 2023
  • Computer-aided design-computer-aided manufacturing technology has been widely used in the manufacture of fixed prostheses including implants, but in the case of removable dentures, the analog method is still being used due to the errors such as a lack of fusion and over-fusion in selective laser meting process. With the recent development of CAD software, virtual surveying and framework design are made possible, and the designed file can be manufactured by milling or 3D printing. It replace the analog method of waxing and denture curing process and also can reduce the production time and cost. Therefore, this case is reported because good clinical results were obtained by digitally surveying on CAD software to produce a surveyed metal restoration and framework on maxillary and mandibular removable dentures.