• Title/Summary/Keyword: Selective Catalyst Reaction (SCR)

Search Result 56, Processing Time 0.024 seconds

A Study on NOx Removal Efficiency using SNCR Process in the Industrial Waste Incineration Plant (산업폐기물 소각로에서 SNCR공정에 의한 NOx 제거효율에 관한 연구)

  • Ryu Hae-Yeol;Kim Min-Choul;Jung Jong-Hyeon;Lee Gang-Woo;Chung Jin-Do
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.332-339
    • /
    • 2005
  • The environmental regulations in the world has been reinforced and many nations has devoted themselves to the development of cost-effective technology. Selective catalyst reduction(SCR) and selective non-catalyst reduction (SNCR) processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. One of these typical technologies for reduction of do-NOx is SNCR process has increased continuously because of the low cost for building and maintenance. Nevertheless the researches on the application to real scale plant by the reductant like Urea are rarely studied. In this paper, an experimental investigations were performed on the SNCR process in the industrial waste incineration plant. With no reducing agent, the concentration of NOx stayed in around 180 ppm $(O_2\;12\%)$ with the exhausting temperature of $950^{\circ}C$ and changed within the range of 20 ppm to remain relatively consistent. When $10\;wt\%)$ of a solution was added, the efficiency of denitrification reached above $61.4\%$ with the NSR of 2.0 and the exhausting temperature of $950^{\circ}C.$ When the concentration of the urea solution was set to $10\;wt\%$ and the sprinkling to four nozzles, the reaction temperature was reduced to about $50~100^{\circ}C$ with a mixture of $10\;wt\%\;CH_3OH\;and\;5wt\%\;Na_2CO_3$ in $40\;wt\%$ of the solution. The NOx removal efficiency increased to $78.4\%,$ achieving a broader and expansive range of reaction temperatures than the addition of an unmixed pure solution.

NOx Removal of Mn Based Catalyst for the Pretreatment Condition and Sulfur Dioxide (전처리 조건 및 황산화물에 대한 Mn-Cu계 촉매의 탈질특성)

  • Park, Kwang-Hee;You, Seung-Han;Park, Young-Ok;Kim, Sang-Wung;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1923-1930
    • /
    • 2012
  • Mn-Cu catalysts were tested for selective catalytic reduction of NOx with NH3. Influence of initial reaction temperature was studied for NOx conversion in which reaction temperature was changed three patterns. NOx conversion of catalysts calcined at 200, 300 and $340^{\circ}C$ was measured during the changing temperature. Hydrogen conversion efficiency of calcined catalysts was also measured in the $H_2$-TPR system. The deactivation effect of $SO_2$ on catalyst was investigated with the on-off control of $SO_2$ supply. The catalyst which calcined above $340^{\circ}C$ was somewhat deactivated with thermal shock. The reason of deactivation was draw from the results of surface area and hydrogen conversion.

A Reaction Kinetic for Selective Catalytic Reduction of NOx with NH3 over Manganese Oxide (NMO, MnO2, Mn2O3) at Low Temperature (망간산화물(NMO, MnO2, Mn2O3)을 이용한 저온에서의 NH3-SCR의 반응속도 연구)

  • Kim, Min Su;Hong, Sung Chang
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • In this study, NMO (Natural Manganese Ore), $MnO_2$, and $Mn_2O_3$ catalysts were used in the selective catalytic reduction process to remove nitrogen oxides (NOx) using $NH_3$ as a reducing agent at low temperatures in the presence of oxygen. In the case of the NMO (Natural Manganese Ore), it was confirmed that the conversion of nitrogen oxides in the stability test did not change even after 100 hours at 423 K. The Kinetics experiments were carried out within the range where heat and mass transfer were not factors. From a steady-state Kinetics study, it was found that the low-temperature SCR reaction was zero order with the respect to $NH_3$ and 0.41 ~ 0.57 order with the respect to NO and 0.13 ~ 0.26 order with the respect to $O_2$. As temperature increases, the reaction order decreases as a result of $NH_3$ and oxygen concentration. It was confirmed that the reaction between the $NH_3$ dissociated and adsorbedon the catalyst surface and the gaseous nitrogen monoxide (E-R model) and the reaction with the adsorbed nitrogen monoxide (L-H model) occur.

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.

A Study on Removal of NOx in Diesel Engine using Reductive Catalyst (환원촉매를 이용한 디젤엔진 배기가스 중 NOx 저감에 관한 연구)

  • Huang, H.Z.;Hwang, J.W.;Jung, J.Y.;Han, J.H.;Demidiouk, V.I.;Chae, J.O.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2255-2261
    • /
    • 2000
  • To eliminate $NO_x$ in diesel emission. selective catalyst reduction (SCR) was used in real diesel engine. Among the SCR methods, metal oxide and perovskite catalysts were introduced in this paper. The removal efficiencies with various major, promoter catalysts on ${\gamma}-Al_2O_3$ at different reaction temperature were investigated, and $LaCuMnO_x$ catalyst which has high removal efficiency at the temperature of real diesel exhaust gas was selected. $NO_x$ reduction was carried out over these catalysts in the flow-through type reactor using by-pass ($SV=3,300h^{-1}$). Under the given condition to this study, perovskite catalysts showed considerably high removal efficiency and $LaCuMnO_x$ was the best one among these catalysts in the temperature range of $150{\sim}450^{\circ}C$.

  • PDF

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Characterization of NOx Reduction on Filter Bag Support System at Low Temperature using Powder Type MnOx and V2O2/TiO2 Catalysts (분말형 MnOx와 V2O2/TiO2 촉매를 이용한 저온영역의 백필터 공정에서 질소산화물 제거 특성)

  • Kim, Byung-Hwan;Kim, Jeong-Heon;Kang, Pil-Sun;Yoo, Seung-Kwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In this study, the selective catalytic reduction of $NO_x$ with ammonia was carried out in a filter bag support reactor. The experiments were performed by powder type $MnO_x$ and $V_2O_5$/$TiO_2$ catalyst at low temperature between 130 and $250^{\circ}C$. Also, the effect of $SO_2$ and $H_2O$ on the NO conversion was investigated under our test conditions. The powder type catalysts were analyzed by X-ray photoelectron spectrum (XPS), X-ray diffraction(XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was observed that NO removal efficiency of the powder type $V_2O_5$/$TiO_2$ catalyst was 85% at low temperature($200^{\circ}C$) under presence of oxygen and that of $MnO_x$ was 50% at the same condition. The powder type $V_2O_5$/$TiO_2$ catalyst, in conclusion, was found to be available for SCR reaction in a filter bag support system.

Deactivation of V2O5/TiO2 catalytic system on the sulfuric oxides (V2O5/TiO2 촉매시스템의 황산화물에 대한 비활성화 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7433-7438
    • /
    • 2015
  • Deactivation characteristics of $V_2O_5/TiO_2$ catalysts were studied for selective catalytic reduction(SCR) of NOx with ammonia in the presence of $SO_2$. Performance of catalyst was investigated for $deNO_x$ activity while changing temperature, $SO_2$ concentration. The activity of catalyst was decreased with the increase of $SO_2$ concentration and reaction time. Also, degree of activity drop was largely decreased with the increase of reaction temperature in the range of $250{\sim}300^{\circ}C$. Physicochemical properties of deactivated catalysts were characterized by BET, XRD, SEM, TPD analysis. According to the analysis results, deactivation phenomena occur due to the relatively high formation of ammonium sulfate salts, which created by unreacted ammonia and water in the presence of $SO_2$. It was revealed that ammonium sulfate cause the pore plogging of support and deposition of active matter.

The Separation of Vanadium and Tungsten from Spent Selective Catalytic Reduction Catalyst Leach Solution by Alamine 336 (탈질 폐촉매 침출액으로부터 Alamine 336에 의한 바나듐과 텅스텐의 분리)

  • Seongsu Kang;Gyeonghye Moon;In-Hyeok Choi;Dakyeong Baek;Kyoungkeun Yoo
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.30-37
    • /
    • 2024
  • In this study, we investigated the separability of vanadium and tungsten from spent SCR (Selective Catalytic Reduction) catalyst leach solution by reduction of vanadium and solvent extraction using Alamine 336 and conducted experiments to optimize process conditions. It is difficult to separate vanadium and tungsten due to their similar chemical behavior, but tungsten can be selectively extracted from acidic solution when vanadium extraction is prevented by reducing anionic pentavalent vanadium to cationic tetravalent vanadium. The results showed that NaHSO3 was most suitable as a reducing agent, and the extraction efficiency of vanadium decreased and the separation efficiency increased as the amount of reducing agent added, reaction time, and temperature increased. When reducing NaHSO3 1.5 eq, 60 min, and 60℃, which are optimal conditions of reduction, vanadium and tungsten were effectively separated with vanadium extraction efficiency of 5.8%, tungsten extraction efficiency of 99%, and separation factor of vanadium and tungsten of 7,564.

DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst (Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.328-336
    • /
    • 2005
  • In order to remove the NO contained in exhaust gas by the non-selective catalyst reduction method, the catalysts were prepared by varing the loading amount of Ag and V into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ using the prepared catalysts was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations using. The influence of the catalyst structure on $NO_x$ conversion was studied through the analysis of the physical properties of the prepared catalysts. In the case of $AgV/{\gamma}-Al_2O_3$ catalyst, the $NO_x$ conversion was lower than that of $Ag/{\gamma}-Al_2O_3$ at higher temperatures but higher than that of $Ag/{\gamma}-Al_2O_3$ at lower temperatures. Even though $SO_2$ was contained in the reaction gas, the $NO_x$ conversion did not decrease. Based on the analysis including XRD, XPS, TPR, and UV-Vis DRS before and after the experiments, the experimental results were examined. The results indicated that, $NO_x$ conversion decreased at higher temperatures since Ag oxide could not be maintained well due to the addition of V, whereas it increased at temperatures lower than $300^{\circ}C$ due to the catalytic action of V.