• Title/Summary/Keyword: Selection probability

Search Result 643, Processing Time 0.02 seconds

A Comparison of Single and Multi-matrix Models for Bird Strike Risk Assessment (단일 및 다중 매트릭스 모델의 비교를 통한 항공기-조류 충돌 위험성 평가 모델 분석)

  • Hong, Mi-Jin;Kim, Myun-Sik;Moon, Young-Min;Choi, Jin-Hwan;Lee, Who-Seung;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.6
    • /
    • pp.624-635
    • /
    • 2019
  • Bird strike accidents, a collision between aircraft and birds, have been increasing annually due to an increasing number of aircraft operating each year to meet heavier demand for air traffic. As such, many airports have conducted studies to assess and manage bird strike risks effectively by identifying and ranking bird species that can damage aircraft based on the bird strike records. This study was intended to investigate the bird species that were likely to threaten aircraft and compare and discuss the risk of each species estimated by the single-matrix and multi-matrix risk assessment models based on the Integrated Flight Information Service (IFIS) data collected in Gimpo, Gimhae and Jeju Airports in South Korea from 2005 to 2013. We found that there was a difference in the assessment results between the two models. The single-matrix model estimated 2 species and 6 taxa in Gimpo and Gimhae Airports and 2 species and 5 taxa in Jeju Airport to have the risk score above "high," whereas the multi-matrix model estimated 3 species and 5 taxa in Gimpo Airport, 4 species and 5 taxa in Gimhae Airport, and 2 species and 3 taxa in Jeju Airport to have the risk score above "very high." Although both models estimated the similar high-risk species in Gimpo and Gimhae Airports, there was a significant difference in Jeju Airport. Gimpo and Gimhae Airports are near the estuary of a river, which is an excellent habitat for large and heavy waterbirds. On the other hand, Jeju Airport is near the coast and the city center, and small and light bird species are mostly observed. Since collisions with such species have little effect on aircraft fuselage, the impact of common variables between the two models was small, and the additional variables caused a significant difference between the estimation by the two models.

Analysis of $^{99m}Tc-ECD$ Brain SPECT images in Boys and Girls ADHD using Statistical Parametric Mapping(SPM) (통계적 파라미터지도 작성법(SPM)을 이용한 남여별 ADHD환자의 뇌 SPECT 영상비교분석)

  • Park, Soung-Ock;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.27 no.3
    • /
    • pp.31-41
    • /
    • 2004
  • Attention deficit hyperactivity disorder(ADHD)is one of the most common psychiatric disorders in childhood, especially school age children and persisting into adult. ADHD is affected 7.6% in our children, Korea. and persisting into $15{\sim}20%$ in adult. And it is characterized by hyperactivity, inattention and impulsivity. Brain imaging is one of way to diagnosis for ADHD. Brain imaging studies may be provide information two types - structural and functional imaging. Structural and functional images of the brain play an important role in management of neurologic and psyciatric disorders. Brain SPECT, with perfusion imaging radiopharmaceuticals is one of the appropriate test to diagnosis of neurologic and psychiatric diseases. Ther are a few studies about separated analysis between boys and girls ADHD SPECT brain images. Selection of Probability level(P-value) is very important to determind the abnormalities when analysis a data by SPM. SPM is a statistical method used for image analysis and determine statistical different between two groups-normal and ADHD. Commonly used P-value is P<0.05 in statistical analysis. The purpose of this study is to evaluation of blood flow clusters distribution, between boys and girls ADHD. The number of normal boys are 8(6-7y, average : $9.6{\pm}3.9y$) and 51(4-11y, average : $9.0{\pm}2.4$) ADHD patients, and normal girls are 4(6-12y, average : $9{\pm}2.4y$) and 13(2-13y, average $10{\pm}3.5y$) ADHD patiens. Blood flow tracer $^{99m}Tc-ethylcysteinate$ dimer(ECD) injected as rCBF agent and take blood flow images after 30 min. during sleeping by SPECT camera. The anatomical region of hyperperfusion of rCBF in boys ADHD group is posterior cingulate gyrus and hyperperfusion rate is 15.39-15.77% according to p-value. And girls ADHD group appears at posterior cerebellum, Lt. cerbral limbic lobe and Lt. Rt. cerebral temporal lobe. These areas hyperperfusion rate are 24.68-31.25%. Hypoperfusion areas in boys ADHD,s brain are Lt. cerebral insular gyrus, Lt. Rt. frontal lobe and mid-prefrontal lobe, these areas decresed blood flow as 15.21-15.64%. Girls ADHD decreased blood flow regions are Lt. cerebral insular gyrus, Lt. cerebral frontal and temporal lobe, Lt. Rt. lentiform nucleus and Lt. parietal lobe. And hypoperfusion rate is 30.57-30.85% in girls ADHD. The girls ADHD group's perfusion rate is more variable than boys. The studies about rCBF in ADHD, should be separate with boys and girls.

  • PDF

Development of a Model for Analylzing and Evaluating the Suitability of Locations for Cooling Center Considering Local Characteristics (지역 특성을 고려한 무더위쉼터의 입지특성 분석 및 평가 모델 개발)

  • Jieun Ryu;Chanjong Bu;Kyungil Lee;Kyeong Doo Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.4
    • /
    • pp.143-154
    • /
    • 2024
  • Heat waves caused by climate change are rapidly increasing health damage to vulnerable groups, and to prevent this, the national, regional, and local governments are establishing climate crisis adaptation policy. A representative climate crisis adaptation policy to reduce heat wave damage is to expand the number of cooling centers. Because it is highly effective in a short period of time, most metropolitan local governments, except Jeonbuk, include the project as an adaptation policy. However, the criteria for selecting a cooling centers are different depending on the budget and non-budget, so the utilization rate and effectiveness of the cooling centers are all different. Therefore, in this study, we developed logistic regression models that can predict and evaluate areas with a high probability of expanding cooling centers in order to implement adaptation policy in local governments. In Incheon Metropolitan City, which consists of various heat wave-vulnerable environments due to the coexistence of the old city and the new city, a logistic model was developed to predict areas where heat waves can be cooling centered by dividing it into Ganghwa·Ongjin-gun and other regions, taking into account socioeconomic and environmental differences. As a result of the study, the statistical model for the Ganghwa·Ogjin-gun region showed that the higher the ground surface temperature and the more and more the number of elderly people over 65 years old, the higher the possibility of location of cooling centers, and the prediction accuracy was about 80.93%. The developed logistic regression model can predict and evaluate areas with a high potential as cooling centers by considering regional environmental and social characteristics, and is expected to be used for priority selection and management when designating additional cooling centers in the future.