• Title/Summary/Keyword: Selectable marker gene

Search Result 64, Processing Time 0.035 seconds

Molecular Approaches for Cloning of Important Higher Plant Genes (고등식물의 유용 유전자 크로닝을 위한 분자적 접근)

  • ;Ala
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An Avabidofsis thaliana gene encoding phosphoribosyl anthranilate transferase is shown to be the gene that is defective in blue fluorescent trp 1 mutant plants. This gene, named PAT1, coding region is homologous to those for the phosphoribosyl anthranilate transferase from many microorganisms. This is due to a defect in tryptophan biosynthesis that leads to an accumulation of anthranilate, a fluorescent intermediate in the tryptophan pathway. PAT1 is a single-copy gene that complements all of the visible phenotypes of the different trp1 mutants. Experiments to determine the regulation of the PAT1 gene are in progress. The wild-type PAT1 promoter and several promoter deletions of PAT1 gene have been transformed into Arabidopsis tryptophan mutants. These constructs might identify promoter elements that control this patterns. We have isolated the homozygous lines in T3 seeds and analysed the protein levels using PAT antibody and PAT protein level increased two fold in pHSl07. Finally, the potential of using PAT1 as a selectable marker or visible reporter of gene expression is being explored.

  • PDF

Expression of Schwanniomyces occidentalis $\alpha-Amylase$ Gene in Saccharomyces cerevisiae var. diastaticus

  • Park, Jeong-Nam;Shin, Dong-Jun;Kim, Hee-Ok;Kim, Dong-Ho;Lee, Hwang-Hee;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.668-671
    • /
    • 1999
  • The gene encoding Schwanniomyces occidentalis $\alpha-amylase$(AMY) was introduced into Saccharomyces cerevisiae var. diastaticus which secreted only glucoamylase, by using a linearized yeast integrating vector to develop stable strains with a capability of secreting $\alpha-amylase$and glucoamylase simultaneously. A dominant selectable marker, the geneticin(G418) resistance gene (Gt^r$), was cloned into a vector to screen wild-type diploid transformants harboring the AMY gene. The amylolytic activities of transformants were about 3-7 times higher than those of the recipient strains. When grown in nonselective media, the transformants with the linearized integrating vector containing the AMY gene exhibited almost all of the mitotic stability after 100 generations.

  • PDF

Iron Accumulation in Transgenic Red Pepper Plants Introduced Fp1 Gene Encoding the Iron Storage Protein

  • Kim, Young-Ho;Lee, Young-Ok;Nou, Ill-Sup;Shim, Ill-Yong;Toshiaki Kameya;Takashi Saito;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • The Fp1 gene, originally isolated from red pepper seedlings, encode the iron storage protein, and have a high homology with ferritin genes at DNA and amino acid level. In order to determine ferritin protein expression in vegetative tissue. Fp1 gene was constructed in plant expression vector(PIG12IHm) and introduced in red pepper(var. Bukang, Chungyang and Kalag-Kimjang 2) via Agrobacterium tumefaciensmediated transformation. After selection on MS media containing Kanamycin(Km), putatively selected transformants were confirmed by amplification of selectable marker gene(Fp1 and NPII) by polymerase chain reaction. Northern blot showed that transcripts of Fp1 gene were detected in mature leaves of the plants. In A6, A7 and A8 and A14 of transgenic plants, transcript of Fp1 gene was increased seven-fold to eight-fold than other transgenic plants. Also the proteins obtained from leaves of transgenic plants were immunologically detected by Western blot using rabbit anti-ferritin polyclonal antibody. The expression protein appeared as strong band of apparent mass of 23.5kDa. suggesting the iron accumulation in transgenic red pepper plants.

  • PDF

Matrix Attachment Regions (MARs) as a Transformation Booster in Recalcitrant Plant Species

  • Han, Kyung-Hwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.225-231
    • /
    • 1997
  • For genetic engineering to be commercially viable, an efficient transformation system is needed to produce transgenic plane from diverse genotypes ("generalized protocol"). Development of such a system requires optimization of a number of components such as gene transfer agent, plant tissues competent for both regeneration and transformation, and control of transgene expression. Although several novel gene transfer methods have been developed for plane, a majority of stably transformed plane express the introduced genes at low levels. Moreover, silencing of selectable marker genes shortly after their incorporation into plant chromosomes may result in low recovery of transgenic tissues from selection. Matrix attachment regions (MARs) are DNA sequences that bind to the cell's proteinaceous nuclear matrix to form DNA loop domains. MARs have been shown to increase transgene expression in tobacco cells, and reduce position in mature transgenic plants. Flanking an antibiotic resistance transgene with MARs should therefore lead to improved rates of transformation in a diversity of species, and may permit recalcitrant species and genotypes to be successfully transformed. Literature review and recent data from my laboratory suggest that MARs can serve as a transformation booster in recalcitrant plant species.

  • PDF

Generation of Baculovirus Expression Vector Using Detective Autographa California Nuclear Polyhedrosis Virus Genome Maintained in Escherichia coli for $Occ^{+}$ Virus Production

  • Je, Yeon-Ho;Chang, Jin-Hee;Roh, Jong-Yul;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.155-160
    • /
    • 2001
  • We have generated a novel baculovirus genome which can be maintained in Escherichia coli that facilitates the rapid and efficient generation of recombinant baculovirus expression vectors. To make $Occ^{+}$ recombinant expression vectors, polyhedrin gene under the control of p10 promoter was inserted to bAcGOZA and this genome was designated bApGOZA. As in bAcGOZA, bApGOZA lacks a portion of the essential ORF1629 gene, but includes a mini-F replicon and selectable kanamycin-resistance marker, This occasion-producing activity of bApGOZA can be used very conveniently for its oral infectivity to insect larvae in mass production of foreign protein and insecticides.

  • PDF

Plant Regeneration and Expression of Mouse Adenosine Deaminase Gene in Transgenic Hot Pepper (Capsicum annuum L.) Plants (형질전환된 고추( Capsicum annum L.) 식물체의 Mouse Adenosine Deaminas 유전자 발현)

  • 양덕춘;이계연;유영숙;최경화;임학태
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.37-41
    • /
    • 1997
  • The in vitro regeneration and genetic transformation systems in hot pepper(Capsicum annuum L.) have not been routinely available, which has been a major limiting factor in the application of new genetic manipulations. An efficient procedure to regenerate whole pepper plants and to generate transgenic plants expressing a foreign gene was established. A relatively high frequency of plant regeneration was observed when hypocotyl and cotyledon explants were cultured on MS medium supplemented with NAA 0.1 mg/L plus zeatin 2.0 mg/L or IBA 10.0 mg/L plus BAP 1.0 mg/L. Addition of AgNO$_3$5 $\mu$M to these media improved the regeneration frequency up to 8%. For plant transformation, hypocotyl and cotyledon explants of hot pepper were precultured on shoot induction media without kanamycin added for 2 days, and then cocultured with Agrobacterium tumefaciens pDY183 for 2 days. Putative transformants were obtained from selection media containing 100 mg/L kanamycin sulfate and 500 mg/L carbenicillin. Putatively selected transformants were confirmed by amplification of selectable marker genes (ADA and NPT II) by polymerase chain reacion. Successful transcripts of ADA gene were detected by Northern blot analysis. Enzyme activity of ADA was also examined by spectrophotometric analysis, and expression of ADA gene in hot pepper suggests the potential application of ADA gene as a selectable marker in plants.

  • PDF

Analysis of Flavonoid 3',5'-Hydroxylase Gene in Transgenic Petunia (Petunia hybrida) Plants (형질 전환된 페튜니아 식물체에서의 Flavonoid 3',5' -Hydroxylase 유전자의 분석)

  • 김영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.323-327
    • /
    • 1998
  • The flavonoid biosynthetic pathway has been studied as a genetic model system, particularly in Petunia hybrida. In order to study the flavonoid biosynthetic pathway, we constructed a fusion gene system between Cauliflower Mosaic Virus (CaMV) 35S promoter and eggplant flavonoid 3', 5'-hydroxylase in pBI 121 plasmid. An optimal condition for plant regeneration was observed when internode explants were cultured on MS medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. For plant transformation internode explants of Petunia hybrida were precultured on BM medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. Putative transgenic plants were selected on medium containing kanamycin 50 mg/L plus cefotaxim 300 mg/L. Putative selected transformants were confirmed by amplification of selectable marker gene (nptII) by polymerase chain reaction (PCR) and Southern hybridization of flavonoid 3',5'-hydroxylase gene.

  • PDF

Generation of a Transformant Showing Higher Manganese Peroxidase (Mnp) Activity by Overexpression of Mnp Gene in Trametes versicolor

  • Yeo, Su-Min;Park, Nam-Mee;Song, Hong-Gyu;Choi, Hyoung-T.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • Trametes versicolor has a lignin degrading enzyme system, which is also involved in the degradation of diverse recalcitrant compounds. Manganese-dependent peroxidase (MnP) is one of the lignin degrading enzymes in T. versicolor. In this study, a cDNA clone of a putative MnP-coding gene was cloned and transferred into an expression vector (pBARGPE1) carrying a phosphinothricin resistance gene (bar) as a selectable marker to yield the expression vector, pBARTvMnP2. Transformants were generated through genetic transformation using pBARTvMnP2. The genomic integration of the MnP clone was confirmed by PCR with bar-specific primers. One transformant showed higher enzyme activity than the recipient strain did, and was genetically stable even after 10 consecutive transfers on non-selective medium.

The Use of Glufosinate as a Selective Marker for the Transformation of Cucumber (Cucumis sativus L.) (오이의 형질전환을 위반 선발마커로서 Glufosinate의 이용)

  • Cho Mi-Ae;Song Yun-Mi;Park Yun-Ok;Ko Suck-Min;Min Sung-Ran;Liu Jang-Ryol;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.161-165
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated cotyledonary explants transformation was used to produce transgenic cucumber. Cotyledonary explants of cucumber (c.v., Eunchim) were co-cultivated with strains Agrobaderium (LBA4404, GV3101, EHA101) containing the binary vector (pPTN289) carrying with CaMV 355 promoter-gus gene as reporter and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selectable marker. There was a significant difference in the transformation frequency depending Agrobacterium strains. The EHA101 of bacterial strains employed gave the maximum frequency (0.35%) for cucumber transformation. Histochemical gus and leaf painting assay showed that 15 individual lines were transgenic with the gus and bar gene. Southern blot analysis also revealed that the gus gene was successfully integrated into each genome of transgenic cucumber.

Construction of Plasmid Vectors for Zymomonas mobilis (Zymomonas mobilis의 Plasmid Vector 제조에 관한 연구)

  • Hwang, Duk-Ju;Rhee, Sang-Ki;Pack, Moo-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.5
    • /
    • pp.319-327
    • /
    • 1987
  • In order to develop useful plasmid vectors for Zymomonas cells, attempts were made to isolate natural plasmids from Z. mobilis ATCC10988. Among a few plasmids isolated, a small plasmid of 3.9 Kb size was chosen and designated as pZM3. By introducing the replication origin of pZM3 into pBR325, a hybrid plasmid vector of 8.4 Kb size, pHZ22, was constructed. This vector contained chloramphenicol resistant gene as a selectable marker and proved to be conjugally transmissible and stably maintained in Z. mobilis. Tetracycline resistant gene was isolated from RP4 and introduced into pHZ22 to make a new vector called pHZT224 of 10.7 Kb size. Through n series of experiments, it was evident that these plasmid vectors containing selectable markers of chloramphenicol and tetracycline resistance were shuttle vectors functional in Z. mobilis as well as E. coli.

  • PDF