• 제목/요약/키워드: Sejong Electronic Lexicon of Korean

검색결과 3건 처리시간 0.02초

대규모 말뭉치와 전산 언어 사전을 이용한 의미역 결정 규칙의 구축 (Rule Construction for Determination of Thematic Roles by Using Large Corpora and Computational Dictionaries)

  • 강신재;박정혜
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.219-228
    • /
    • 2003
  • 본 논문은 한국어정보처리 과정에서 구문 관계를 의미역으로 사상시키기 위한 규칙을 효과적으로 구축하는 방법을 제시하고 있다. 의미역의 결정은 의미 분석의 핵심 작업 중 하나이며 자연어처리에서 해결해야 하는 매우 중요한 문제 중 하나이다. 일반적인 언어학 지식과 경험만 가지고 의미역 결정 규칙을 기술하는 것은 작업자의 주관에 따라 결과가 많이 달라질 수 있으며, 또 모든 경우를 다룰 수 있는 규칙의 구축은 불가능하다. 하지만 본 논문에서 제시하는 방법은 대량의 원시 말뭉치를 분석하여 실제 언어의 다양한 사용례를 반영하며, 또 수십 명의 한국어 학자들이 심도 있게 구축하고 있는 세종전자사전의 격틀 정보도 함께 고려하기 때문에 보다 객관적이고 효율적인 방법이라 할 수 있다. 의미역을 보다 정확하게 결정하기 위해 구문관계, 의미부류, 형태소 정보, 이중주어의 위치정보 등의 자질 정보를 사용하였으며, 특히 의미부류의 사용으로 인해 규칙의 적용률이 향상되는 효과를 가져올 수 있었다.

한국어 전산처리에서 규칙과 확률을 이용한 구문관계에 따른 의미역 결정 (Determination of Thematic Roles according to Syntactic Relations Using Rules and Statistical Models in Korean Language Processing)

  • 강신재;박정혜
    • 한국산업정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문은 한국어정보처리 과정에서 규칙과 확률을 이용하여 구문 관계를 의미역으로 사상시키는 방법을 제시하고 있다. 의미역의 결정은 의미 분석의 핵심 작업 중 하나이며 자연어처리에서 해결해야 하는 매우 중요한 문제중 하나이다. 일반적인 언어학 지식과 경험만 가지고 의미역 결정 규칙을 기술하는 것은 작업자의 주관에 따라 결과가 많이 달라질 수 있으며, 또 모든 경우를 다룰 수 있는 규칙의 구축은 불가능하다. 하지만 본 논문에서 제시하는 혼합 방법은 대량의 원시 말뭉치를 분석하여 실제 언어의 다양한 사용례를 반영하며, 또 수십 명의 한국어학자들이 심도 있게 구축하고 있는 세종전자사전의 격틀 정보도 함께 고려하기 때문에 보다 객관적이고 효율적인 방법이라 할 수 있다. 의미역을 보다 정확하게 결정하기 위해 구문관계, 의미부류, 형태소 정보, 이중주어의 위치정보 등의 자질 정보를 사용하였으며, 특히 의미부류의 사용으로 인해 적용률이 향상되는 효과를 가져올 수 있었다.

  • PDF

온톨로지 구축 및 단어 의미 중의성 해소에의 활용 (Ontology Construction and Its Application to Disambiguate Word Senses)

  • 강신재
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.491-500
    • /
    • 2004
  • 본 논문은 기존의 다양한 언어자원들을 이용하여 온톨로지를 구축하고, 이를 단어의미 중의성 해소에 활용하는 방법을 제시하고 있다. 온톨로지를 실용적으로 구축하기 위해서는 가도카와 시소러스의 개념 체계에 격 관계와 기타 의미관계와 같은 다른 의미관계를 추가하여 확장하는 방법을 선택하였다. 구축된 온톨로지를 단어 의미 중의성 해소에 활용하기 위해서는, 결합가 정보를 포함하고 있는 전자사전을 먼저 이용하여 단어의 의미를 결정하고, 결정하지 못한 단어의 의미는 온톨로지를 이용하여 결정하는 절차를 거친다. 이를 위해 온톨로지 내 개념들간의 상호정보가 말뭉치의 통계 정보에 근거하여 계산되는데, 이를 가중치로 간주하면 온톨로지는 가중치 그래프로 생각할 수 있으므로 개념간 경로를 통하여 개념간 연관도를 알아 볼 수 있다. 실제 기계번역 시스템에서 본 방법은 온톨로지를 사용하지 않은 방법보다 9%의 성능 향상을 가져오는 결과를 얻을 수 있었다.