• Title/Summary/Keyword: Sejong Corpus

Search Result 53, Processing Time 0.022 seconds

KKMA : A Tool for Utilizing Sejong Corpus based on Relational Database (꼬꼬마 : 관계형 데이터베이스를 활용한 세종 말뭉치 활용 도구)

  • Lee, Dong-Joo;Yeon, Jong-Heum;Hwang, In-Beom;Lee, Sang-Goo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1046-1050
    • /
    • 2010
  • Corpus is widely used as a fundamental resource for various purposes in linguistic studies. There are several large corpora such as Sejong corpus in Korea. However, it is hard to find a tool utilizing such large corpora. In this paper, we propose a method of utilizing Sejong corpus based on the relational database. We designed the relational database scheme to store corpus and implemented a Web-based application so that many researchers can easily access and utilize the Sejong corpus.

Korean Nominal Bank, Using Language Resources of Sejong Project (세종계획 언어자원 기반 한국어 명사은행)

  • Kim, Dong-Sung
    • Language and Information
    • /
    • v.17 no.2
    • /
    • pp.67-91
    • /
    • 2013
  • This paper describes Korean Nominal Bank, a project that provides argument structure for instances of the predicative nouns in the Sejong parsed Corpus. We use the language resources of the Sejong project, so that the same set of data is annotated with more and more levels of annotation, since a new type of a language resource building project could bring new information of separate and isolated processing. We have based on the annotation scheme based on the Sejong electronic dictionary, semantically tagged corpus, and syntactically analyzed corpus. Our work also involves the deep linguistic knowledge of syntaxsemantic interface in general. We consider the semantic theories including the Frame Semantics of Fillmore (1976), argument structure of Grimshaw (1990) and argument alternation of Levin (1993), and Levin and Rappaport Hovav (2005). Various syntactic theories should be needed in explaining various sentence types, including empty categories, raising, left (or right dislocation). We also need an explanation on the idiosyncratic lexical feature, such as collocation and etc.

  • PDF

Korean Word Sense Disambiguation using Dictionary and Corpus (사전과 말뭉치를 이용한 한국어 단어 중의성 해소)

  • Jeong, Hanjo;Park, Byeonghwa
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • As opinion mining in big data applications has been highlighted, a lot of research on unstructured data has made. Lots of social media on the Internet generate unstructured or semi-structured data every second and they are often made by natural or human languages we use in daily life. Many words in human languages have multiple meanings or senses. In this result, it is very difficult for computers to extract useful information from these datasets. Traditional web search engines are usually based on keyword search, resulting in incorrect search results which are far from users' intentions. Even though a lot of progress in enhancing the performance of search engines has made over the last years in order to provide users with appropriate results, there is still so much to improve it. Word sense disambiguation can play a very important role in dealing with natural language processing and is considered as one of the most difficult problems in this area. Major approaches to word sense disambiguation can be classified as knowledge-base, supervised corpus-based, and unsupervised corpus-based approaches. This paper presents a method which automatically generates a corpus for word sense disambiguation by taking advantage of examples in existing dictionaries and avoids expensive sense tagging processes. It experiments the effectiveness of the method based on Naïve Bayes Model, which is one of supervised learning algorithms, by using Korean standard unabridged dictionary and Sejong Corpus. Korean standard unabridged dictionary has approximately 57,000 sentences. Sejong Corpus has about 790,000 sentences tagged with part-of-speech and senses all together. For the experiment of this study, Korean standard unabridged dictionary and Sejong Corpus were experimented as a combination and separate entities using cross validation. Only nouns, target subjects in word sense disambiguation, were selected. 93,522 word senses among 265,655 nouns and 56,914 sentences from related proverbs and examples were additionally combined in the corpus. Sejong Corpus was easily merged with Korean standard unabridged dictionary because Sejong Corpus was tagged based on sense indices defined by Korean standard unabridged dictionary. Sense vectors were formed after the merged corpus was created. Terms used in creating sense vectors were added in the named entity dictionary of Korean morphological analyzer. By using the extended named entity dictionary, term vectors were extracted from the input sentences and then term vectors for the sentences were created. Given the extracted term vector and the sense vector model made during the pre-processing stage, the sense-tagged terms were determined by the vector space model based word sense disambiguation. In addition, this study shows the effectiveness of merged corpus from examples in Korean standard unabridged dictionary and Sejong Corpus. The experiment shows the better results in precision and recall are found with the merged corpus. This study suggests it can practically enhance the performance of internet search engines and help us to understand more accurate meaning of a sentence in natural language processing pertinent to search engines, opinion mining, and text mining. Naïve Bayes classifier used in this study represents a supervised learning algorithm and uses Bayes theorem. Naïve Bayes classifier has an assumption that all senses are independent. Even though the assumption of Naïve Bayes classifier is not realistic and ignores the correlation between attributes, Naïve Bayes classifier is widely used because of its simplicity and in practice it is known to be very effective in many applications such as text classification and medical diagnosis. However, further research need to be carried out to consider all possible combinations and/or partial combinations of all senses in a sentence. Also, the effectiveness of word sense disambiguation may be improved if rhetorical structures or morphological dependencies between words are analyzed through syntactic analysis.

Detecting and correcting errors in Korean POS-tagged corpora (한국어 품사 부착 말뭉치의 오류 검출 및 수정)

  • Choi, Myung-Gil;Seo, Hyung-Won;Kwon, Hong-Seok;Kim, Jae-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.227-235
    • /
    • 2013
  • The quality of the part-of-speech (POS) annotation in a corpus plays an important role in developing POS taggers. There, however, are several kinds of errors in Korean POS-tagged corpora like Sejong Corpus. Such errors are likely to be various like annotation errors, spelling errors, insertion and/or deletion of unexpected characters. In this paper, we propose a method for detecting annotation errors using error patterns, and also develop a tool for effectively correcting them. Overall, based on the proposed method, we have hand-corrected annotation errors in Sejong POS Tagged Corpus using the developed tool. As the result, it is faster at least 9 times when compared without using any tools. Therefore we have observed that the proposed method is effective for correcting annotation errors in POS-tagged corpus.

Automatic Word Spacing Using Raw Corpus and a Morphological Analyzer (말뭉치와 형태소 분석기를 활용한 한국어 자동 띄어쓰기)

  • Shim, Kwangseob
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • This paper proposes a method for the automatic word spacing of unsegmented Korean sentences. In our method, eojeol monograms are used for word spacing as opposed to the syllable n-grams that have been used in previous studies. The use of a Korean morphological analyzer is limited to the correction of typical word spacing errors. Our method gives a 98.06% syllable accuracy and a 94.15% eojeol recall, when 10-fold cross-validated with the Sejong corpus, after filtering out non-hangul eojeols. The processing rate is 250K eojeols or 1.8 MB per second on a typical personal computer. Syllable accuracy and eojeol recall are related to the size of the eojeol dictionary, better performance is expected with a bigger corpus.

Improvement of Korean Homograph Disambiguation using Korean Lexical Semantic Network (UWordMap) (한국어 어휘의미망(UWordMap)을 이용한 동형이의어 분별 개선)

  • Shin, Joon-Choul;Ock, Cheol-Young
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • Disambiguation of homographs is an important job in Korean semantic processing and has been researched for long time. Recently, machine learning approaches have demonstrated good results in accuracy and speed. Other knowledge-based approaches are being researched for untrained words. This paper proposes a hybrid method based on the machine learning approach that uses a lexical semantic network. The use of a hybrid approach creates an additional corpus from subcategorization information and trains this additional corpus. A homograph tagging phase uses the hypernym of the homograph and an additional corpus. Experimentation with the Sejong Corpus and UWordMap demonstrates the hybrid method is to be effective with an increase in accuracy from 96.51% to 96.52%.

The Study Of Lexical Statistics Analysis For Elementary School Textbook : Focusing On Comparing The SEJONG Corpus In Korean (초등학교 교과서의 어휘 통계 분석 연구 : 한국어 세종 코퍼스와의 비교를 중심으로)

  • Yu, Wonhee;Lim, Heuiseok
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • In this paper, we build a primary school textbook corpus and a statistical analysis was performed with respect to the vocabulary found in elementary textbooks. also We performed the Spearman's correlation coefficient in order to explore whether similar elementary textbooks in general life used vocabulary. the result of this study shows that corpus building in the form of elementary school textbooks and actual examples. then numerically shown correlation of the elementary textbooks and general corpus.

Word sense disambiguation using dynamic sized context and distance weighting (가변 크기 문맥과 거리가중치를 이용한 동형이의어 중의성 해소)

  • Lee, Hyun Ah
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.444-450
    • /
    • 2014
  • Most researches on word sense disambiguation have used static sized context regardless of sentence patterns. This paper proposes to use dynamic sized context considering sentence patterns and distance between words for word sense disambiguation. We evaluated our system 12 words in 32,735sentences with Sejong POS and sense tagged corpus, and dynamic sized context showed 92.2% average accuracy for predicates, which is better than accuracy of static sized context.

On Subjunctives in Korean: Exploiting a Bilingual Corpus

  • Song, Sanghoun
    • Language and Information
    • /
    • v.18 no.1
    • /
    • pp.1-32
    • /
    • 2014
  • This paper provides a corpus study on subjunctives in Korean in a way of comparative semantics. The whole arguments of this paper are bolstered by distributional evidence taken from naturally occurring bitexts (i.e. a bilingual corpus), in which one sentence in a language is aligned with one translation in the other language. Since previous studies regard past tense morphology as the main component to express irrealis and uncertainty, this paper accordingly checks out whether the past tense morpheme (e/a)ss in Korean is also responsible for conveying the meaning of subjunctives. My finding is that the past tense morpheme (e/a)ss is a sufficient condition for forming subjunctives in Korean. The current corpus study verifies that the past tense morpheme is not obligatorily used in present conditional counterfactuals in Korean, unlike English. Yet, if (e/a)ss is used and the antecedent denotes a present situation, the conditional sentence can only be interpreted as conveying counterfactuality. On the other hand, wish constructions in Korean, irrespective of the semantic tense, often contain the past tense morpheme. Hence, this work substantiates Iatridou (2000)'s theory of 'fake past tense' is applicable to Korean subjunctives. The present corpus study, additionally, reveals that a conditional marker telamyen is a component of expressing past counterfactuals in Korean.

  • PDF

Chunking of Contiguous Nouns using Noun Semantic Classes (명사 의미 부류를 이용한 연속된 명사열의 구묶음)

  • Ahn, Kwang-Mo;Seo, Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.10-20
    • /
    • 2010
  • This paper presents chunking strategy of a contiguous nouns sequence using semantic class. We call contiguous nouns which can be treated like a noun the compound noun phrase. We use noun pairs extracted from a syntactic tagged corpus and their semantic class pairs for chunking of the compound noun phrase. For reliability, these noun pairs and semantic classes are built from a syntactic tagged corpus and detailed dictionary in the Sejong corpus. The compound noun phrase of arbitrary length can also be chunked by these information. The 38,940 pairs of 'left noun - right noun', 65,629 pairs of 'left noun - semantic class of right noun', 46,094 pairs of 'semantic class of left noun - right noun', and 45,243 pairs of 'semantic class of left noun - semantic class of right noun' are used for compound noun phrase chunking. The test data are untrained 1,000 sentences with contiguous nouns of length more than 2randomly selected from Sejong morphological tagged corpus. Our experimental result is 86.89% precision, 80.48% recall, and 83.56% f-measure.