• 제목/요약/키워드: Seismic wave

검색결과 766건 처리시간 0.028초

ARTICLES : MULTICHANNEL ANALYSIS OF SURFACE WAVES (MASW) - AN OVERVIEW

  • ChoonB.Park
    • 지구물리
    • /
    • 제6권2호
    • /
    • pp.99-105
    • /
    • 2003
  • Rayleigh waves which has more than 70% of the total seismic energy is the principal component of ground roll. Frequency component of a surface wave has a different propagation velocity, that is, phase velocity, which results in a different wavelength called dispersion. Rayleigh wave is one of the most common ways to use the dispersive properties of surface waves. MASW is a seismic method to evaluate shear-wave velocity information of the ground.

  • PDF

터널 채널파를 이용한 사갱 연장성 규명 (Estimation of the continuity of inclined pits by tunnel channel wave investigation)

  • 김중열;방기문;정현기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.229-236
    • /
    • 2002
  • In this paper, a new novel technique of seismic survey is introduced to estimate the continuity of inclined pits filled with water, It was assumed that the pits would be connected to an abandoned railway tunnel that might be constructed in the past. Thus, detection of pit end was needed for the design of a new highway tunnel(Yukshimreong tunnel) that was likely to be met with a pit. In the beginning of exploration, no reliable, cost effective method was available. Hence, focus of interest moved toward the high impedance contrast(reflection coefficient k∼0.8) between water and rock. In this special model of sequence rock-water-rock, total reflection occurs and the seismic energy, when it is generated in the pit water, is nearly confined to the pit so that seismic waves can propagate much further within the pit. As a matter of convenience, this is called“tunnel channel wave”. With these considerations in mind, seismic detonator(2g) was used as a source at the entrance of pit, whereas hydrophone chain(hydrophone interval=1m) was placed on the bottom of pit. With this appropriate source-receiver arrangement, desirable down-going and up-going waves could be observed that will help conform the continuity of pits. After about one year, it was ascertained that the inclined pit of interest was just nearby crossed with the newly excavated tunnel, as it was predicted.

  • PDF

우리나라 지진공학적 지반 분류를 위한 30m 미만 심도 평균 전단파 속도의 활용 (Utilization of Mean Shear Wave Velocity to a Depth Shallower than 30m for Efficient Seismic Site Classification in Korea)

  • 선창국;정충기;김동수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.562-571
    • /
    • 2006
  • Mean shear wave velocity of the upper 30m $(V_s30)$ used as the current site classification criterion for determining seismic design ground motions in Korea was established based on the typical depth of site investigations in western US, in which the depth to bedrock is much deeper than that in Korea. In this study, to establish appropriate site classification system for site conditions of Korea, site investigations including in-situ seismic tests to determine shear wave velocity $(V_s)$ were carried out at total 72 sites in Korean peninsula. The mean $V_s's$ to the depths of 5m, 10m, 15m, 20m and 25m together with the $V_s30$ at the testing sites were determined, and the correlation between the mean $V_s$ to a depth shallower than 30m and the $V_s30$ was drawn and suggested for the efficient seismic site classification in Korea. The proposed correlation could be utilized for the seismic design in case of the $V_s$ profiles shallower than 30 m in depth. The correlation in this study, nevertheless, requires further modification by means of the accumulation of various site data in Korea.

  • PDF

기반암 전단파속도의 부지응답특성 영향평가 (The Effect of the Shear Wave Velocity of a Seismic Control Point on Site Response Analysis)

  • 이진선
    • 한국지진공학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 논문에서는 부지응답 해석 시 통제운동 지점의 전단파속도가 부지응답해석에 미치는 영향을 살펴보았다. 내진설계기준 연구(II)(건설교통부, 1997)에서는 '재현주기별 지진가속도의 작용 위치는 "기본적인 지진재해도는 보통암지반을 기준으로 평가한다."라고 정의하고 있다. 그러나 보통암지반(SB)의 전단파속도 범위가 $760m/sec{\sim}1500m/sec$로 폭넓게 분포되어 있어, 부지응답 해석 시 통제운동지점의 선택에 따라 해석의 결과에 차이가 발생할 수 있다. 따라서, 본 논문에서는 국내의 대표적인 해성퇴적지반층인 인천 및 부산지역의 상세부지조사결과를 바탕으로 1차원 등가선형해석을 수행하였다. 통제운동지점인 기반암 전단파속도에 따른 지층내 가속도의 크기 변화, 그리고 이에 따른 액상화 안전율 변화정도를 살펴보았다. 또한, 해석결과와 외국의 내진설계기준을 바탕으로 국내 내진설계기준의 개선방향에 대하여 살펴보았다.

Random Amplitude Variability of Seismic Ground Motions and Implications for the Physical Modeling of Spatial Coherency

  • Zerva, A.
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권2호
    • /
    • pp.139-150
    • /
    • 2001
  • An initial approach for the identification of physical causes underlying the spatial coherency of seismic ground motions it presented. The approach relies on the observation that amplitude and phase variability of seismic data recorded over extended areas around the amplitude and phase of a common, coherent component are correlated. It suffices then to examine the physical causes for the amplitude variability in the seismic motions, in order to recognize the causes for the phase variability and, consequently, the spatial coherency. In this study, the effect of randomness in the shear wave velocity at a site on the amplitude variability of the surface motions mi investigated by means of simulations. The amplitude variability of the simulated motions around the amplitude of the common component is contained within envelope functions, the shape of which suggests, on a preliminary basis, the trend of the decay of coherency with frequency.

  • PDF

A Comparative Study on Borehole Seismic Test Methods for Site Classification

  • Jung, Jong-Suk;Sim, Youngjong;Park, Jong-Bae;Park, Yong-Boo
    • 토지주택연구
    • /
    • 제3권4호
    • /
    • pp.389-397
    • /
    • 2012
  • In this study, crosshole seismic test, donwhole seismic test, SPT uphole test, and suspension PS logging (SPS logging) were conducted and the shear wave velocities of these tests were compared. The test demonstrated the following result: Downhole tests showed similar results compared to those of crosshole tests, which is known to be relatively accurate. SPS logging showed reliable results in the case of no casing, i.e. in the rock mass, while, in the case of soil ground, its values were lower or higher than those of other tests. SPT-uphole tests showed similar results in the soil ground and upper area of rock mass compared to other methods. However, reliable results could not be obtained from these tests because SPT sampler could not penetrate into the rock mass for the tests.

지진시 사면안정해석에 있어서의 진도법과 지진응답해석의 결과 비교 (Compare Seismic Coefficient Method and Seismic Response Analysis for Slope during Earthquake)

  • 박성진;오병현;박춘식;황성춘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 2000
  • Numerical analysis of slope stability is presented using slice method, static seismic analysis methods, and earthquake response analysis methods. Static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis, Hachinohe-wave is applied. Safety factor calculated using slice method for failure surface. Calculating methods are Bishop's method and Janhu's method. Static seismic analysis was applied using Mhor-Coulomb model and earthquake response analysis was applied using non-linear elastic model.

  • PDF

SSI해석을 통한 압축전담 교량 내진보강공법 거동 특성 연구 (Behavior Characteristics of Compression-Only Bridge Seismic Reinforcement Method Using SSI Analysis)

  • 장유식;윤원섭;유광호
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1231-1238
    • /
    • 2022
  • In this study, the reinforcement effect of the compression-only bridge seismic reinforcement method, which is mainly applied to old bridges, was studied through SSI analysis. As the analysis conditions, acceleration magnitudes of 0.1g, 0.15g, and 0.2 g were applied, and long-period and short-period seismic waves were applied. As a result of the analysis according to the assumed ground characteristics and structure size, the horizontal displacement at the reinforced section was reduced by about 9%, and the long-period seismic wave had a 95% larger displacement than the short-period seismic wave. In addition, an increase in acceleration of 0.1g resulted in a displacement of about 50%, and a large increase in displacement was observed in long-period seismic waves. As a result of the analysis, in the case of the compression-only bridge seismic reinforcement method, there was a reinforcing effect, so the field applicability was excellent.

단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구 (A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System)

  • 박상기;조정래;조창백;이진혁;김동찬
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

스프링식 횡방항 발진 크로스홀 탄성파 시험을 통한 지반 동적 특성의 합리적 산정 (Reliable Evaluation of Dynamic Ground Properties from Cross-hole Seismic Test using Spying-loaded Lateral Impact Source)

  • 선창국;목영진;정충기;김명모
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.1-13
    • /
    • 2006
  • 지반의 동적 변형 특성인 전단파 속도$(V_s)$, 압축파 속도$(V_p)$, 그리고 그에 따른 포아송 비(v)는 내진 설계나 내진 성능 평가 외에도 구조물의 거동 평가에 필요한 매우 중요한 지반 정수이다. 지난 수십 년 동안 이러한 지반 정수를 효율적이고 정밀하게 측정하기 위하여, 여러 가지 공내 탄성파 시험 기법들이 개발 및 적용되어 왔다. 본 연구에서는 가장 신뢰성이 높은 현장 탄성파 기법인 크로스홀 탄성파 시험을 지반 동적 물성 획득 기법으로 선정하였다. 지하수위 존재 여부에 관계 없이 토사뿐만 아니라 암반을 대상으로 크로스홀 시험을 성공적으로 수행할 수 있도록, 연직 시추공 안에서 지반을 대상으로 횡방향 가진이 가능한 스프링식 발진 장치를 개발하고, 두 곳의 기존 항만 부두 부지와 신규 LNG 저장 시설 두 부지로 구성된 국내 세 지역을 대상으로 크로스홀 탄성파 시험을 실시하였다. 대상 부지에서의 개발 발진 장치 적용을 통한 크로스홀 시험으로부터 지표 부근 토사부터 하부 공학적 기반암 및 지진학적 기반암으로 구성된 암반까지의 깊이별 $V_s,\;V_p$ 및 v와 같은 지반 동적 특성을 매우 효율적으로 결정하였으며, 적용 대상 시설물인 기존 항만 부두 시설물의 내진 성능 평가 그리고 신규 LNG 저장 시설물의 내진 설계를 위한 근본 자료로 제시하였다.